Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 2): 125-127, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38333137

RESUMO

The synthesis and crystallographic analysis of the title compound, C9H9N3O2S, are reported. The compound crystallizes in the monoclinic space group P21/c, revealing characteristic bond lengths and angles typical of thio-semicarbazone groups. The supra-molecular organization primarily arises from hydrogen bonding and π-π stacking inter-actions, leading to distinctive dimeric formations.

2.
Nanomaterials (Basel) ; 13(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999319

RESUMO

The controlled supply of bioactive molecules is a subject of debate in animal nutrition. The release of bioactive molecules in the target organ, in this case the intestine, results in improved feed, as well as having a lower environmental impact. However, the degradation of bioactive molecules' in transit in the gastrointestinal passage is still an unresolved issue. This paper discusses the feasibility of a simple and cost-effective procedure to bypass the degradation problem. A solid/liquid adsorption procedure was applied, and the operating parameters (pH, reaction time, and LY initial concentration) were studied. Lysozyme is used in this work as a representative bioactive molecule, while Adsorbo®, a commercial mixture of clay minerals and zeolites which meets current feed regulations, is used as the carrier. A maximum LY loading of 32 mgLY/gAD (LY(32)-AD) was obtained, with fixing pH in the range 7.5-8, initial LY content at 37.5 mgLY/gAD, and reaction time at 30 min. A full characterisation of the hybrid organoclay highlighted that LY molecules were homogeneously spread on the carrier's surface, where the LY-carrier interaction was mainly due to charge interaction. Preliminary release tests performed on the LY(32)-AD synthesised sample showed a higher releasing capacity, raising the pH from 3 to 7. In addition, a preliminary Trolox equivalent antioxidant capacity (TEAC) assay showed an antioxidant capacity for the LY of 1.47 ± 0.18 µmol TroloxEq/g with an inhibition percentage of 33.20 ± 3.94%.

3.
J Am Chem Soc ; 145(37): 20229-20241, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671971

RESUMO

In this work, a comprehensive investigation of the photoinduced processes and mechanisms linked to the luminescence of a novel nonperchlorinated Thiele hydrocarbon (TTH) is presented. Despite the comparable diradical character of TTH (y0 = 0.32-0.44) and the unsubstituted Thiele hydrocarbon (TH) (y0 = 0.30), the polyhalogenated species is inert and photostable, showing an intense deep-red/near-infrared (NIR) fluorescence (photoluminescence quantum yield (PLQY) = 0.84 in toluene) even at room temperature and in the solid state (PLQY = 0.19). TTH displays a large Stokes shift (307 nm in benzonitrile) and solvatochromic behavior, which is unusual for a centrosymmetric, nonpolar, and low-conjugated species. These outstanding emission features are interpreted through quantum-chemical calculations, indicating that its fluorescence arises from the low-lying dark doubly excited zwitterionic state, typically found at low excitation energies in diradicaloids, acquiring dipole moment and intensity by state mixing via twisting around the strongly elongated exocyclic CC bonds of the excited p-quinodimethane (pQDM) core, with a mechanism similar to sudden polarization occurring in olefins. Such a mechanism is derived from ns and fs transient absorption measurements.

4.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361726

RESUMO

FINEAU (2021-2024) is a trans-disciplinary research project involving French, Serbian, Italian, Portuguese and Romanian colleagues, a French agricultural cooperative and two surface-treatment industries, intending to propose chènevotte, a co-product of the hemp industry, as an adsorbent for the removal of pollutants from polycontaminated wastewater. The first objective of FINEAU was to prepare and characterize chènevotte-based materials. In this study, the impact of water washing and treatments (KOH, Na2CO3 and H3PO4) on the composition and structure of chènevotte (also called hemp shives) was evaluated using chemical analysis, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray computed nanotomography (nano-CT), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, solid state NMR spectroscopy and thermogravimetric analysis. The results showed that all these techniques are complementary and useful to characterize the structure and morphology of the samples. Before any chemical treatment, the presence of impurities with a compact unfibrillated structure on the surfaces of chènevotte samples was found. Data indicated an increase in the crystallinity index and significant changes in the chemical composition of each sample after treatment as well as in surface morphology and roughness. The most significant changes were observed in alkaline-treated samples, especially those treated with KOH.


Assuntos
Cannabis/química , Produtos Agrícolas/química , Resíduos/análise , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Europa (Continente) , Humanos , Cinética , Teste de Materiais , Termogravimetria
5.
Waste Manag ; 120: 642-649, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208292

RESUMO

The present study describes the first example of utilization of a natural clay mineral as catalyst in a process addressed to chemical valorization of poly-[bisphenol A carbonate] (PC; (1)) wastes. A natural clinochlore was investigated for the first time as the catalyst of the hydrolysis reaction of 1, a potential route to chemical recycling of wastes of this polymeric material. At 473 K, in tetrahydrofuran (THF) as the solvent, the mineral promoted effectively the depolymerization (up to 99%, after 6 h) of 1 by H2O and the selective (~99%) regeneration of the monomer bisphenol A (BPA, (2)). Temperature, catalyst loading, reaction time, H2O/PC weight ratio affected markedly the productivity of the process. The role of the catalyst was also focused: the experimental data showed that the exposed brucite-like sheets of clinochlore are involved in the hydrolysis reaction and take active part in promoting the depolymerization process.


Assuntos
Plásticos , Reciclagem , Compostos Benzidrílicos , Carbonatos , Cloretos , Hidrólise , Fenóis
6.
Carbohydr Polym ; 207: 720-728, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30600058

RESUMO

The antibacterial activity of the S-unsubstituted- and S-benzyl-substituted-2-mercapto-benzothiazoles 1-4 has been evaluated after complexation with Methyl-ß-Cyclodextrin (Me-ß-CD) or incorporation in solid dispersions based on Pluronic® F-127 and compared with that of the pure compounds. This with the aim to gain further insights on the possible mechanism(s) involved in the CD-mediated enhancement of antimicrobial effectiveness, a promising methodology to overcome the microbial resistance issue. Together with Differential Scanning Calorimetry, FT-IR spectroscopy and X-ray Powder Diffraction investigations, a molecular modeling study focused on compounds 2 and 4 showed that the S-unsubstituted compound 2/Me-ß-CD complex should be more stable than S-benzyl-substituted 4/Me-ß-CD. Only for 1/Me-ß-CD or, particularly, 2/Me-ß-CD complexes, the antibacterial effectiveness was enhanced in the presence of selected bacterial strains. The results herein presented support the mechanisms focusing on the interactions of the bacterial membrane with CD complexes more than those focusing on the improvement of dissolution properties consequent to CD complexation.


Assuntos
Antibacterianos/farmacologia , Benzotiazóis/farmacologia , beta-Ciclodextrinas/química , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Benzotiazóis/química , Composição de Medicamentos , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Poloxâmero/química , Solubilidade , Staphylococcus aureus/efeitos dos fármacos , Tensoativos/química
7.
Colloids Surf B Biointerfaces ; 172: 362-371, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189387

RESUMO

Biological processes using microorganisms for nanoparticle synthesis are appealing as eco-friendly nanofactories. The response of the photosynthetic bacterium Rhodobacter sphaeroides to gold exposure and its reducing capability of Au(III) to produce stable gold nanoparticles (AuNPs), using metabolically active bacteria and quiescent biomass, is reported in this study. In the former case, bacterial cells were grown in presence of gold chloride at physiological pH. Gold exposure was found to cause a significant increase of the lag-phase duration at concentrations higher than 10 µM, suggesting the involvement of a resistance mechanism activated by Au(III). Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDS) analysis of bacterial cells confirmed the extracellular formation of AuNPs. Further studies were carried out on metabolically quiescent biomass incubated with gold chloride solution. The biosynthesized AuNPs were spherical in shape with an average size of 10 ±â€¯3 nm, as analysed by Transmission Electron Microscopy (TEM). The nanoparticles were hydrophilic and stable against aggregation for several months. In order to identify the functional groups responsible for the reduction and stabilization of nanoparticles, AuNPs were analysed by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), X-ray Fluorescence Spectrometry (XRF) and X-ray Absorption Spectroscopy (XAS) measurements. The obtained results indicate that gold ions bind to functional groups of cell membrane and are subsequently reduced by reducing sugars to gold nanoparticles and capped by a protein/peptide coat. Gold nanoparticles demonstrated to be efficient homogeneous catalysts in the degradation of nitroaromatic compounds.


Assuntos
Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Fotossíntese , Rhodobacter sphaeroides/metabolismo , Anaerobiose , Biomassa , Catálise , Nanopartículas Metálicas/ultraestrutura , Fotossíntese/efeitos dos fármacos , Rhodobacter sphaeroides/efeitos dos fármacos , Rhodobacter sphaeroides/crescimento & desenvolvimento , Rhodobacter sphaeroides/ultraestrutura
8.
Sci Rep ; 7: 40663, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098185

RESUMO

This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several µm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000-2800 cm-1, associated with weaker bands at 1655, 1438 and 1297 cm-1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons.

9.
Waste Manag ; 46: 546-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26403388

RESUMO

Two mineral clays of the montmorillonite group were tested as sorbents for the removal of Rare Earths (REs) from liquid solutions. Lanthanum and neodymium model solutions were used to perform uptake tests in order to: (a) verify the clays sorption capability, (b) investigate the sorption mechanisms and (c) optimize the experimental parameters, such as contact time and pH. The desorption was also studied, in order to evaluate the feasibility of REs recovery from waters. The adsorption-desorption procedure with the optimized parameters was also tested on a leaching solution obtained by dissolution of a dismantled NdFeB magnet of a hard-disk. The clays were fully characterized after REs adsorption and desorption by means of X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS); the liquid phase was characterized via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analyses. The experimental results show that both clays are able to capture and release La and Nd ions, with an ion exchange mechanism. The best total efficiency (capture ≈ 50%, release ≈ 70%) is obtained when the uptake and release processes are performed at pH=5 and pH=1 respectively; in real leached scrap solutions, the uptake is around 40% but release efficiency is strongly decreased passing from a mono-ion system to a real system (from 80% to 5%). Furthermore, a strong matrix effect is found, with the matrix largely affecting both the uptake and the release of neodymium.


Assuntos
Bentonita/química , Metais Terras Raras/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Adsorção , Silicatos de Alumínio/química , Argila , Íons/química , Espectroscopia Fotoeletrônica , Difração de Pó , Espectrofotometria Atômica , Difração de Raios X
10.
Org Lett ; 16(13): 3424-7, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24960284

RESUMO

A general method to synthesize conjugated molecules with a benzofulvene core is reported. Up to four conjugated substituents have been introduced via a three-step sequence including (1) synthesis of 1,2-bis(arylethynyl)benzenes; (2) exo-dig electrophilic cyclization promoted by iodine; and (3) cross-coupling reaction of the resulting bis-iodobenzofulvenes with organoboron, organotin, or ethynyl derivatives under Pd catalysis. Structural aspects of the new compounds are discussed.


Assuntos
Derivados de Benzeno/síntese química , Indenos/química , Alcinos/química , Derivados de Benzeno/química , Catálise , Cristalografia por Raios X , Ciclização , Iodo/química , Conformação Molecular , Estrutura Molecular , Estereoisomerismo
11.
Acta Crystallogr C ; 69(Pt 5): 480-2, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23629895

RESUMO

The title complex, [Ir2(C18H13FNO2S)4Cl2]·C7H8, was crystallized from dichloromethane solution under a toluene atmosphere. It is a dimeric complex in which each of the two Ir(III) centres is octahedrally coordinated by two bridging chloride ligands and by two chelating cyclometalated 2-(4-benzylsulfonyl-2-fluorophenyl)pyridine ligands. The crystal structure analysis unequivocally establishes the trans disposition of the two cyclometalated ligands bound to each Ir(III) centre, contrary to our previous hypothesis of a cis disposition. The latter was based on the (1)H NMR spectra of a series of dimeric benzylsulfonyl-functionalized dichloride-bridged iridium complexes, including the compound described in the present work [Ragni et al. (2009). Chem. Eur. J. 15, 136-148]. The toluene solvent molecules, embedded in cavities in the crystal structure, are highly disordered and could not be modelled successfully; their contribution was removed from the refinement using the SQUEEZE routine in the program PLATON [Spek (2009). Acta Cryst. D65, 148-155].

12.
J Hazard Mater ; 244-245: 303-10, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23270954

RESUMO

The existence of a lot of worldwide pentachlorophenol-contaminated sites has induced scientists to concentrate their effort in finding ways to degrade it. Therefore, an effective tool to decompose it from soil mixtures is needed. In this work the efficiency of the phyllomanganate birnessite (KBi) in degrading pentachlorophenol (PCP) through mechanochemical treatments was investigated. To this purpose, a synthesized birnessite and the pollutant were ground together in a high energy mill. The ground KBi-PCP mixtures and the liquid extracts were analyzed to demonstrate that mechanochemical treatments are more efficient in removing PCP than a simple contact between the synthesized birnessite and the pollutant, both in terms of time and extent. The mechanochemically induced PCP degradation mainly occurs through the formation of a surface monodentate inner-sphere complex between the phenolic group of the organic molecules and the structural Mn(IV). This is indicated by the changes induced in birnessite MnO(6) layers as a consequence of the prolonged milling with the pollutant. This mechanism includes the Mn(IV) reduction, the consequent formation of Mn(III) and new vacancies, and free Mn(2+) ions release. The PCP degradation extent is limited by the presence of chloro-substituents on the aromatic ring.


Assuntos
Óxidos/química , Pentaclorofenol/química , Poluentes do Solo/química , Catálise , Difração de Pó , Gerenciamento de Resíduos/métodos , Difração de Raios X
13.
J Hazard Mater ; 201-202: 148-54, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22178279

RESUMO

The aim of this work is to investigate the efficiency of the phyllomanganate birnessite in degrading catechol after mechanochemical treatments. A synthesized birnessite and the organic molecule were grounded together in a high energy mill and the xenobiotic-mineral surface reactions induced by the grinding treatment have been investigated by means of X-ray powder diffraction, X-ray fluorescence, thermal analysis and spectroscopic techniques as well as high-performance liquid chromatography and voltammetric techniques. If compared to the simple contact between the birnessite and the organic molecule, mechanochemical treatments have revealed to be highly efficient in degrading catechol molecules, in terms both of time and extent. Due to the two phenolic groups of catechol and the small steric hindrance of the molecule, the extent of the mechanochemically induced degradation of catechol onto birnessite surfaces is quite high. The degradation mechanism mainly occurs via a redox reaction. It implies the formation of a surface bidentate inner-sphere complex between the phenolic group of the organic molecules and the Mn(IV) from the birnessite structure. Structural changes occur on the MnO(6) layers of birnessite as due to the mechanically induced surface reactions: reduction of Mn(IV), consequent formation of Mn(III) and new vacancies, and free Mn(2+) ions production.


Assuntos
Catecóis/isolamento & purificação , Poluentes Ambientais/isolamento & purificação , Fenômenos Mecânicos , Óxidos/química , Eliminação de Resíduos/métodos , Físico-Química , Cromatografia Líquida de Alta Pressão , Análise Diferencial Térmica , Recuperação e Remediação Ambiental/métodos , Oxirredução , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA