Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Res ; 29(1): 284, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745261

RESUMO

BACKGROUND: The Berlin definition of acute respiratory distress syndrome (ARDS) includes only clinical characteristics. Understanding unique patient pathobiology may allow personalized treatment. We aimed to define and describe ARDS phenotypes/endotypes combining clinical and pathophysiologic parameters from a Canadian ARDS cohort. METHODS: A cohort of adult ARDS patients from multiple sites in Calgary, Canada, had plasma cytokine levels and clinical parameters measured in the first 24 h of ICU admission. We used a latent class model (LCM) to group the patients into several ARDS subgroups and identified the features differentiating those subgroups. We then discuss the subgroup effect on 30 day mortality. RESULTS: The LCM suggested three subgroups (n1 = 64, n2 = 86, and n3 = 30), and 23 out of 69 features made these subgroups distinct. The top five discriminating features were IL-8, IL-6, IL-10, TNF-a, and serum lactate. Mortality distinctively varied between subgroups. Individual clinical characteristics within the subgroup associated with mortality included mean PaO2/FiO2 ratio, pneumonia, platelet count, and bicarbonate negatively associated with mortality, while lactate, creatinine, shock, chronic kidney disease, vasopressor/ionotropic use, low GCS at admission, and sepsis were positively associated. IL-8 and Apache II were individual markers strongly associated with mortality (Area Under the Curve = 0.84). PERSPECTIVE: ARDS subgrouping using biomarkers and clinical characteristics is useful for categorizing a heterogeneous condition into several homogenous patient groups. This study found three ARDS subgroups using LCM; each subgroup has a different level of mortality. This model may also apply to developing further trial design, prognostication, and treatment selection.


Assuntos
Medicina de Precisão , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Medicina de Precisão/métodos , Idoso , Biomarcadores/sangue , Adulto , Fenótipo , Canadá/epidemiologia , Estudos de Coortes
2.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L79-L90, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949201

RESUMO

In this study, we aimed to identify acute respiratory distress syndrome (ARDS) metabolic fingerprints in selected patient cohorts and compare the metabolic profiles of direct versus indirect ARDS and hypoinflammatory versus hyperinflammatory ARDS. We hypothesized that the biological and inflammatory processes in ARDS would manifest as unique metabolomic fingerprints that set ARDS apart from other intensive care unit (ICU) conditions and could help examine ARDS subphenotypes and clinical subgroups. Patients with ARDS (n = 108) and ICU ventilated controls (n = 27) were included. Samples were randomly divided into 2/3 training and 1/3 test sets. Samples were analyzed using 1H nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. Twelve proteins/cytokines were also measured. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to select the most differentiating ARDS metabolites and protein/cytokines. Predictive performance of OPLS-DA models was measured in the test set. Temporal changes of metabolites were examined as patients progressed through ARDS until clinical recovery. Metabolic profiles of direct versus indirect ARDS subgroups and hypoinflammatory versus hyperinflammatory ARDS subgroups were compared. Serum metabolomics and proteins/cytokines had similar area under receiver operator curves when distinguishing ARDS from ICU controls. Pathway analysis of ARDS differentiating metabolites identified a dominant involvement of serine-glycine metabolism. In longitudinal tracking, the identified pathway metabolites generally exhibited correction by 7-14 days, coinciding with clinical improvement. ARDS subphenotypes and clinical subgroups were metabolically distinct. However, our identified metabolic fingerprints are not ARDS diagnostic biomarkers, and further research is required to ascertain generalizability. In conclusion, patients with ARDS are metabolically different from ICU controls. ARDS subphenotypes and clinical subgroups are metabolically distinct.


Assuntos
Benchmarking/métodos , Biomarcadores/metabolismo , Metaboloma , Síndrome do Desconforto Respiratório/patologia , Idoso , Biomarcadores/análise , Estudos de Casos e Controles , Análise Discriminante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/metabolismo
3.
Metabolites ; 10(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438561

RESUMO

Acute respiratory distress syndrome (ARDS) is a clinical syndrome that inflicts a considerably heavy toll in terms of morbidity and mortality. While there are multitudes of conditions that can lead to ARDS, the vast majority of ARDS cases are caused by a relatively small number of diseases, especially sepsis and pneumonia. Currently, there is no clinically agreed upon reliable diagnostic test for ARDS, and the detection or diagnosis of ARDS is based on a constellation of laboratory and radiological tests in the absence of evidence of left ventricular dysfunction, as specified by the Berlin definition of ARDS. Virtually all the ARDS biomarkers to date have been proven to be of very limited clinical utility. Given the heterogeneity of ARDS due to the wide variation in etiology, clinical and molecular manifestations, there is a current scientific consensus agreement that ARDS is not just a single entity but rather a spectrum of conditions that need further study for proper classification, the identification of reliable biomarkers and the adequate institution of therapeutic targets. This scoping review aims to elucidate ARDS omics research, focusing on metabolomics and how metabolomics can boost the study of ARDS biomarkers and help to facilitate the identification of ARDS subpopulations.

4.
Am J Physiol Lung Cell Mol Physiol ; 315(4): L526-L534, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29952222

RESUMO

To date, there is no clinically agreed-upon diagnostic test for acute respiratory distress syndrome (ARDS): the condition is still diagnosed on the basis of a constellation of clinical findings, laboratory tests, and radiological images. Development of ARDS biomarkers has been in a state of continuous flux during the past four decades. To address ARDS heterogeneity, several studies have recently focused on subphenotyping the disease on the basis of observable clinical characteristics and associated blood biomarkers. However, the strong correlation between identified biomarkers and ARDS subphenotypes has yet to establish etiology; hence, there is a need for the adoption of other methodologies for studying ARDS. In this review, we will shed light on ARDS metabolomics research in the literature and discuss advances and major obstacles encountered in ARDS metabolomics research. Generally, the ARDS metabolomics studies focused on identification of differentiating metabolites for diagnosing ARDS, but they were performed to different standards in terms of sample size, selection of control cohort, type of specimens collected, and measuring technique utilized. Virtually none of these studies have been properly validated to identify true metabolomics biomarkers of ARDS. Though in their infancy, metabolomics studies exhibit promise to unfold the biological processes underlying ARDS and, in our opinion, have great potential for pushing forward our present understanding of ARDS.


Assuntos
Biomarcadores/metabolismo , Metaboloma , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/metabolismo , Humanos
5.
J Neurotrauma ; 35(16): 1831-1848, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29587568

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of disability and mortality worldwide. The TBI pathogenesis can induce broad pathophysiological consequences and clinical outcomes attributed to the complexity of the brain. Thus, the diagnosis and prognosis are important issues for the management of mild, moderate, and severe forms of TBI. Metabolomics of readily accessible biofluids is a promising tool for establishing more useful and reliable biomarkers of TBI than using clinical findings alone. Metabolites are an integral part of all biochemical and pathophysiological pathways. Metabolomic processes respond to the internal and external stimuli resulting in an alteration of metabolite concentrations. Current high-throughput and highly sensitive analytical tools are capable of detecting and quantifying small concentrations of metabolites, allowing one to measure metabolite alterations after a pathological event when compared to a normal state or a different pathological process. Further, these metabolic biomarkers could be used for the assessment of injury severity, discovery of mechanisms of injury, and defining structural damage in the brain in TBI. Metabolic biomarkers can also be used for the prediction of outcome, monitoring treatment response, in the assessment of or prognosis of post-injury recovery, and potentially in the use of neuroplasticity procedures. Metabolomics can also enhance our understanding of the pathophysiological mechanisms of TBI, both in primary and secondary injury. Thus, this review presents the promising application of metabolomics for the assessment of TBI as a stand-alone platform or in association with proteomics in the clinical setting.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/metabolismo , Metabolômica/métodos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA