Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Soft Matter ; 20(26): 5258-5259, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888439

RESUMO

Correction for 'A passive star polymer in a dense active bath: insights from computer simulations' by Ramanand Singh Yadav et al., Soft Matter, 2024, 20, 3910-3922, https://doi.org/10.1039/D4SM00144C.

2.
Soft Matter ; 20(19): 3910-3922, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700098

RESUMO

Using computer simulations in two dimensions (2D), we explore the structure and dynamics of a star polymer with three arms made of passive monomers immersed in a bath of active Brownian particles (ABPs). We analyze the conformational and dynamical changes of the polymer as a function of activity and packing fraction. We also study the process of motility induced phase separation (MIPS) in the presence of a star polymer, which acts as a mobile nucleation center. The presence of the polymer increases the growth rate of the clusters in comparison to a bath without the polymer. In particular, for low packing fraction, both nucleation and cluster growth are affected by the inclusion of the star polymer. Clusters grow in the vicinity of the star polymer, resulting in the star polymer experiencing a caged motion similar to a tagged ABP in the dense phase. Due to the topological constraints of the star polymers and clustering nearby, the conformational changes of the star polymer lead to interesting observations. Inter alia, we observe the shrinking of the arm with increasing activity along with a short-lived hairpin structure of one arm formed. We also see the transient pairing of two arms of the star polymer, while the third is largely separated at high activity. We hope our findings will help in understanding the behavior of active-passive mixtures, including biopolymers of complex topology in dense active suspensions.

3.
Environ Sci Technol ; 58(20): 8946-8954, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38736287

RESUMO

Molecular diffusion of chemical species in subsurface environments─rock formations, soil sediments, marine, river, and lake sediments─plays a critical role in a variety of dynamic processes, many of which affect water chemistry. We investigate and demonstrate the occurrence of anomalous (non-Fickian) diffusion behavior, distinct from classically assumed Fickian diffusion. We measured molecular diffusion through a series of five chalk and dolomite rock samples over a period of about two months. We demonstrate that in all cases, diffusion behavior is significantly different than Fickian. We then analyze the results using a continuous time random walk framework that can describe anomalous diffusion in heterogeneous porous materials such as rock. This methodology shows extreme long-time tailing of tracer advance as compared to conventional Fickian diffusion processes. The finding that distinct anomalous diffusion occurs ubiquitously implies that diffusion-driven processes in subsurface zones should be analyzed using tools that account for non-Fickian diffusion.


Assuntos
Sedimentos Geológicos , Difusão , Porosidade
4.
Phys Rev E ; 109(4-1): 044133, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755826

RESUMO

Anomalous diffusion processes, characterized by their nonstandard scaling of the mean-squared displacement, pose a unique challenge in classification and characterization. In a previous study [Mangalam et al., Phys. Rev. Res. 5, 023144 (2023)2643-156410.1103/PhysRevResearch.5.023144], we established a comprehensive framework for understanding anomalous diffusion using multifractal formalism. The present study delves into the potential of multifractal spectral features for effectively distinguishing anomalous diffusion trajectories from five widely used models: fractional Brownian motion, scaled Brownian motion, continuous-time random walk, annealed transient time motion, and Lévy walk. We generate extensive datasets comprising 10^{6} trajectories from these five anomalous diffusion models and extract multiple multifractal spectra from each trajectory to accomplish this. Our investigation entails a thorough analysis of neural network performance, encompassing features derived from varying numbers of spectra. We also explore the integration of multifractal spectra into traditional feature datasets, enabling us to assess their impact comprehensively. To ensure a statistically meaningful comparison, we categorize features into concept groups and train neural networks using features from each designated group. Notably, several feature groups demonstrate similar levels of accuracy, with the highest performance observed in groups utilizing moving-window characteristics and p varation features. Multifractal spectral features, particularly those derived from three spectra involving different timescales and cutoffs, closely follow, highlighting their robust discriminatory potential. Remarkably, a neural network exclusively trained on features from a single multifractal spectrum exhibits commendable performance, surpassing other feature groups. In summary, our findings underscore the diverse and potent efficacy of multifractal spectral features in enhancing the predictive capacity of machine learning to classify anomalous diffusion processes.

5.
Phys Rev Lett ; 132(8): 088301, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457713

RESUMO

We study the dynamics of micron-sized particles on a layer of motile cells. This cell carpet acts as an active bath that propels passive tracer particles via direct mechanical contact. The resulting nonequilibrium transport shows a crossover from superdiffusive to normal-diffusive dynamics. The particle displacement distribution is distinctly non-Gaussian even at macroscopic timescales exceeding the measurement time. We obtain the distribution of diffusion coefficients from the experimental data and introduce a model for the displacement distribution that matches the experimentally observed non-Gaussian statistics. We argue why similar transport properties are expected for many composite active matter systems.

6.
Phys Rev Lett ; 132(5): 057102, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364150

RESUMO

The force autocorrelation function (FACF), a concept of fundamental interest in statistical mechanics, encodes the effect of interactions on the dynamics of a tagged particle. In equilibrium, the FACF is believed to decay monotonically in time, which is a signature of slowing down of the dynamics of the tagged particle due to interactions. Here, we analytically show that in odd-diffusive systems, which are characterized by a diffusion tensor with antisymmetric elements, the FACF can become negative and even exhibit temporal oscillations. We also demonstrate that, despite the isotropy, the knowledge of FACF alone is not sufficient to describe the dynamics: the full autocorrelation tensor is required and contains an antisymmetric part. These unusual properties translate into enhanced dynamics of the tagged particle quantified via the self-diffusion coefficient that, remarkably, increases due to particle interactions.

7.
Phys Rev E ; 108(5): L052101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115422

RESUMO

Using stochastic simulations supported by analytics we determine the degree of nonergodicity of box-confined fractional Brownian motion for both sub- and superdiffusive Hurst exponents H. At H>1/2 the nonequivalence of the ensemble- and time-averaged mean-squared displacements (TAMSDs) is found to be most pronounced (with a giant spread of individual TAMSDs at H→1), with two distinct short-lag-time TAMSD exponents.

9.
Soft Matter ; 19(45): 8802-8819, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37946588

RESUMO

We study the dynamics of a tracer that is elastically coupled to active particles being kept at two different temperatures, as a prototype of tracer dynamics in a non-equilibrium bath. Employing analytical techniques, we find the exact solution of the probability density function for the effective motion of the tracer. The analytical results are supported by numerical simulations. By combining the experimentally accessible quantities such as the response function and the power spectrum, we measure the non-equilibrium fluctuations in terms of the effective temperature. In addition, we compute the energy dissipation rate to find the precise effects of activity. Our study is relevant in understanding athermal fluctuations arising in cytoskeletal networks or inside a chromosome.

10.
Phys Rev E ; 108(3-1): 034113, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849140

RESUMO

How do nonlinear clocks in time and/or space affect the fundamental properties of a stochastic process? Specifically, how precisely may ergodic processes such as fractional Brownian motion (FBM) acquire predictable nonergodic and aging features being subjected to such conditions? We address these questions in the current study. To describe different types of non-Brownian motion of particles-including power-law anomalous, ultraslow or logarithmic, as well as superfast or exponential diffusion-we here develop and analyze a generalized stochastic process of scaled-fractional Brownian motion (SFBM). The time- and space-SFBM processes are, respectively, constructed based on FBM running with nonlinear time and space clocks. The fundamental statistical characteristics such as non-Gaussianity of particle displacements, nonergodicity, as well as aging are quantified for time- and space-SFBM by selecting different clocks. The latter parametrize power-law anomalous, ultraslow, and superfast diffusion. The results of our computer simulations are fully consistent with the analytical predictions for several functional forms of clocks. We thoroughly examine the behaviors of the probability-density function, the mean-squared displacement, the time-averaged mean-squared displacement, as well as the aging factor. Our results are applicable for rationalizing the impact of nonlinear time and space properties superimposed onto the FBM-type dynamics. SFBM offers a general framework for a universal and more precise model-based description of anomalous, nonergodic, non-Gaussian, and aging diffusion in single-molecule-tracking observations.

11.
Chaos ; 33(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832518

RESUMO

Modern experiments routinely produce extensive data of the diffusive dynamics of tracer particles in a large range of systems. Often, the measured diffusion turns out to deviate from the laws of Brownian motion, i.e., it is anomalous. Considerable effort has been put in conceiving methods to extract the exact parameters underlying the diffusive dynamics. Mostly, this has been done for unconfined motion of the tracer particle. Here, we consider the case when the particle is confined by an external harmonic potential, e.g., in an optical trap. The anomalous particle dynamics is described by the fractional Ornstein-Uhlenbeck process, for which we establish new estimators for the parameters. Specifically, by calculating the empirical quadratic variation of a single trajectory, we are able to recover the subordination process governing the particle motion and use it as a basis for the parameter estimation. The statistical properties of the estimators are evaluated from simulations.

12.
Phys Rev E ; 108(2-1): 024125, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723675

RESUMO

Fractional diffusion and Fokker-Planck equations are widely used tools to describe anomalous diffusion in a large variety of complex systems. The equivalent formulations in terms of Caputo or Riemann-Liouville fractional derivatives can be derived as continuum limits of continuous-time random walks and are associated with the Mittag-Leffler relaxation of Fourier modes, interpolating between a short-time stretched exponential and a long-time inverse power-law scaling. More recently, a number of other integrodifferential operators have been proposed, including the Caputo-Fabrizio and Atangana-Baleanu forms. Moreover, the conformable derivative has been introduced. We study here the dynamics of the associated generalized Fokker-Planck equations from the perspective of the moments, the time-averaged mean-squared displacements, and the autocovariance functions. We also study generalized Langevin equations based on these generalized operators. The differences between the Fokker-Planck and Langevin equations with different integrodifferential operators are discussed and compared with the dynamic behavior of established models of scaled Brownian motion and fractional Brownian motion. We demonstrate that the integrodifferential operators with exponential and Mittag-Leffler kernels are not suitable to be introduced to Fokker-Planck and Langevin equations for the physically relevant diffusion scenarios discussed in our paper. The conformable and Caputo Langevin equations are unveiled to share similar properties with scaled and fractional Brownian motion, respectively.

13.
Phys Rev E ; 108(2-1): 024143, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723819

RESUMO

The stochastic motion of a particle with long-range correlated increments (the moving phase) which is intermittently interrupted by immobilizations (the trapping phase) in a disordered medium is considered in the presence of an external drift. In particular, we consider trapping events whose times follow a scale-free distribution with diverging mean trapping time. We construct this process in terms of fractional Brownian motion with constant forcing in which the trapping effect is introduced by the subordination technique, connecting "operational time" with observable "real time." We derive the statistical properties of this process such as non-Gaussianity and nonergodicity, for both ensemble and single-trajectory (time) averages. We demonstrate nice agreement with extensive simulations for the probability density function, skewness, kurtosis, as well as ensemble and time-averaged mean-squared displacements. We place a specific emphasis on the comparisons between the cases with and without drift.

14.
J Phys Chem Lett ; 14(35): 7910-7923, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37646323

RESUMO

Single-particle traces of the diffusive motion of molecules, cells, or animals are by now routinely measured, similar to stochastic records of stock prices or weather data. Deciphering the stochastic mechanism behind the recorded dynamics is vital in understanding the observed systems. Typically, the task is to decipher the exact type of diffusion and/or to determine the system parameters. The tools used in this endeavor are currently being revolutionized by modern machine-learning techniques. In this Perspective we provide an overview of recently introduced methods in machine-learning for diffusive time series, most notably, those successfully competing in the anomalous diffusion challenge. As such methods are often criticized for their lack of interpretability, we focus on means to include uncertainty estimates and feature-based approaches, both improving interpretability and providing concrete insight into the learning process of the machine. We expand the discussion by examining predictions on different out-of-distribution data. We also comment on expected future developments.

15.
PNAS Nexus ; 2(8): pgad258, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37593200

RESUMO

Cell membranes phase separate into ordered Lo and disordered Ld domains depending on their compositions. This membrane compartmentalization is heterogeneous and regulates the localization of specific proteins related to cell signaling and trafficking. However, it is unclear how the heterogeneity of the membranes affects the diffusion and localization of proteins in Lo and Ld domains. Here, using Langevin dynamics simulations coupled with the phase-field (LDPF) method, we investigate several tens of milliseconds-scale diffusion and localization of proteins in heterogeneous biological membrane models showing phase separation into Lo and Ld domains. The diffusivity of proteins exhibits temporal fluctuations depending on the field composition. Increases in molecular concentrations and domain preference of the molecule induce subdiffusive behavior due to molecular collisions by crowding and confinement effects, respectively. Moreover, we quantitatively demonstrate that the protein partitioning into the Lo domain is determined by the difference in molecular diffusivity between domains, molecular preference of domain, and molecular concentration. These results pave the way for understanding how biological reactions caused by molecular partitioning may be controlled in heterogeneous media. Moreover, the methodology proposed here is applicable not only to biological membrane systems but also to the study of diffusion and localization phenomena of molecules in various heterogeneous systems.

16.
Front Comput Neurosci ; 17: 1189853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265780

RESUMO

The self-organization of the brain matrix of serotonergic axons (fibers) remains an unsolved problem in neuroscience. The regional densities of this matrix have major implications for neuroplasticity, tissue regeneration, and the understanding of mental disorders, but the trajectories of its fibers are strongly stochastic and require novel conceptual and analytical approaches. In a major extension to our previous studies, we used a supercomputing simulation to model around one thousand serotonergic fibers as paths of superdiffusive fractional Brownian motion (FBM), a continuous-time stochastic process. The fibers produced long walks in a complex, three-dimensional shape based on the mouse brain and reflected at the outer (pial) and inner (ventricular) boundaries. The resultant regional densities were compared to the actual fiber densities in the corresponding neuroanatomically-defined regions. The relative densities showed strong qualitative similarities in the forebrain and midbrain, demonstrating the predictive potential of stochastic modeling in this system. The current simulation does not respect tissue heterogeneities but can be further improved with novel models of multifractional FBM. The study demonstrates that serotonergic fiber densities can be strongly influenced by the geometry of the brain, with implications for brain development, plasticity, and evolution.

17.
Entropy (Basel) ; 25(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36832659

RESUMO

We introduce a refined way to diffusely explore complex networks with stochastic resetting where the resetting site is derived from node centrality measures. This approach differs from previous ones, since it not only allows the random walker with a certain probability to jump from the current node to a deliberately chosen resetting node, rather it enables the walker to jump to the node that can reach all other nodes faster. Following this strategy, we consider the resetting site to be the geometric center, the node that minimizes the average travel time to all the other nodes. Using the established Markov chain theory, we calculate the Global Mean First Passage Time (GMFPT) to determine the search performance of the random walk with resetting for different resetting node candidates individually. Furthermore, we compare which nodes are better resetting node sites by comparing the GMFPT for each node. We study this approach for different topologies of generic and real-life networks. We show that, for directed networks extracted for real-life relationships, this centrality focused resetting can improve the search to a greater extent than for the generated undirected networks. This resetting to the center advocated here can minimize the average travel time to all other nodes in real networks as well. We also present a relationship between the longest shortest path (the diameter), the average node degree and the GMFPT when the starting node is the center. We show that, for undirected scale-free networks, stochastic resetting is effective only for networks that are extremely sparse with tree-like structures as they have larger diameters and smaller average node degrees. For directed networks, the resetting is beneficial even for networks that have loops. The numerical results are confirmed by analytic solutions. Our study demonstrates that the proposed random walk approach with resetting based on centrality measures reduces the memoryless search time for targets in the examined network topologies.

18.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779972

RESUMO

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

19.
Phys Chem Chem Phys ; 25(3): 1513-1537, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36546878

RESUMO

A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.


Assuntos
Disciplinas das Ciências Biológicas , Imagem Individual de Molécula , Biofísica , Disciplinas das Ciências Biológicas/métodos
20.
Nat Commun ; 13(1): 6717, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344559

RESUMO

Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusion model and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a well-calibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output.


Assuntos
Aprendizado Profundo , Teorema de Bayes , Difusão , Movimento (Física) , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA