Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(36)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38788746

RESUMO

We study the low-frequency Raman active modes of twisted bilayer MoS2for several twist angles using a force-field approach and a parametrized bond polarizability model. We show that twist angles near high-symmetry stacking configurations exhibit stacking frustration that leads to significant buckling of the moiré superlattice. We find that atomic relaxation due to the twist is of prime importance. The periodic displacement of the Mo atoms shows the realization of a soliton network, and in turn, leads to the emergence of a number of frequency modes not seen in the high-symmetry stacking systems. Some of the modes are only seen in theXZRaman polarization setup while others are seen in theXYsetup. The symmetry of the normal modes, and how this affects the Raman tensors is examined in detail.

2.
J Phys Condens Matter ; 35(48)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37611610

RESUMO

Finite size armchair graphene nanoribbons (GNRs) of different families are theoretically studied using the Hubbard model in both mean-field and GW approximations, including spin correlation effects. It is shown that correlation primarily affect the properties of topological end states of the nanoribbons. A representative structure of each of the three GNR families is considered but the seven-atom width nanoribbon is studied in detail and compared to previously published experimental results, showing a clear improvement when correlations are included. Using isolated spin contributions to scanning tunneling microscopy (STM) simulations, spin-polarized measurements in STM are also suggested to help distinguish and highlight correlation effects.

3.
Phys Chem Chem Phys ; 25(22): 15314-15324, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222396

RESUMO

The 2D naphthylene-ß structure is a theoretically proposed sp2 nanocarbon allotrope based on the assembly of naphthalene-based molecular building blocks, which features metallic properties. We report that 2D naphthylene-ß structures host a spin-polarized configuration which turns the system into a semiconductor. We analyze this electronic state in terms of the bipartition of the lattice. In addition, we study the electronic properties of nanotubes obtained from the rolling up of 2D naphthylene-ß. We show that they inherit the properties of the parent 2D nanostructure, such as the emergence of spin-polarized configurations. We further rationalize the results in terms of a zone-folding scheme. We also show that the electronic properties can be modulated using an external transverse electric field, including a semiconducting-to-metallic transition for sufficiently large field strength.

4.
Nanoscale ; 15(3): 1053-1067, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35703316

RESUMO

Many computational models have been developed to predict the rates of atomic displacements in two-dimensional (2D) materials under electron beam irradiation. However, these models often drastically underestimate the displacement rates in 2D insulators, in which beam-induced electronic excitations can reduce the binding energies of the irradiated atoms. This bond softening leads to a qualitative disagreement between theory and experiment, in that substantial sputtering is experimentally observed at beam energies deemed far too small to drive atomic dislocation by many current models. To address these theoretical shortcomings, this paper develops a first-principles method to calculate the probability of beam-induced electronic excitations by coupling quantum electrodynamics (QED) scattering amplitudes to density functional theory (DFT) single-particle orbitals. The presented theory then explicitly considers the effect of these electronic excitations on the sputtering cross section. Applying this method to 2D hexagonal BN and MoS2 significantly increases their calculated sputtering cross sections and correctly yields appreciable sputtering rates at beam energies previously predicted to leave the crystals intact. The proposed QED-DFT approach can be easily extended to describe a rich variety of beam-driven phenomena in any crystalline material.

5.
Adv Mater ; 35(12): e2207089, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36580439

RESUMO

2D materials are ideal for nanopores with optimal detection sensitivity and resolution. Among these, molybdenum disulfide (MoS2 ) has gained traction as a less hydrophobic material than graphene. However, experiments using 2D nanopores remain challenging due to the lack of scalable methods for high-quality freestanding membranes. Herein, a site-directed, scaled-up synthesis of MoS2 membranes on predrilled nanoapertures on 4-inch wafer substrates with 75% yields is reported. Chemical vapor deposition (CVD), which introduces sulfur and molybdenum dioxide vapors across the sub-100 nm nanoapertures results in exclusive formation of freestanding membranes that seal the apertures. Nucleation and growth near the nanoaperture edges is followed by nanoaperture decoration with MoS2 , which proceeds until a critical flake curvature is achieved, after which fully spanning freestanding membranes form. Intentional blocking of reagent flow through the apertures inhibits MoS2 nucleation around the nanoapertures, promoting the formation of large-crystal monolayer MoS2 membranes. The in situ grown membranes along with facile membrane wetting and nanopore formation using dielectric breakdown enables the recording of dsDNA translocation events at an unprecedentedly high 1 MHz bandwidth. The methods presented here are important steps toward the development of scalable single-layer membrane manufacture for 2D nanofluidics and nanopore applications.

6.
Nano Lett ; 22(15): 6069-6074, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35878122

RESUMO

The importance of phonons in the strong correlation phenomena observed in twisted-bilayer graphene (TBG) at the so-called magic-angle is under debate. Here we apply gate-dependent micro-Raman spectroscopy to monitor the G band line width in TBG devices of twist angles θ = 0° (Bernal), ∼1.1° (magic-angle), and ∼7° (large-angle). The results show a broad and p-/n-asymmetric doping behavior at the magic angle, in clear contrast to the behavior observed in twist angles above and below this point. Atomistic modeling reproduces the experimental observations in close connection with the joint density of electronic states in the electron-phonon scattering process, revealing how the unique electronic structure of magic-angle TBGs influences the electron-phonon coupling and, consequently, the G band line width. Overall, the value of the G band line width in magic-angle TBG is larger when compared to that of the other samples, in qualitative agreement with our calculations.

7.
Small ; 18(31): e2202301, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713270

RESUMO

The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5-AGNRs are obtained via on-surface synthesis under ultrahigh vacuum conditions from Br- and I-substituted precursors. It is shown that the use of I-substituted precursors and the optimization of the initial precursor coverage quintupled the average 5-AGNR length. This significant length increase allowed the integration of 5-AGNRs into devices and the realization of the first field-effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub-nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.

8.
Food Res Int ; 150(Pt A): 110774, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865789

RESUMO

Reconstitution of dairy powders is strongly influenced by the presence and physical state of fat on the particle surface. The present study investigates the effect of a micronized lactose coating on the physical state of the fat and the reconstitution kinetics of whole milk powder at four different temperatures (4/21/40/60 °C) and two stirring rates (400/800 rpm). For this purpose, two types of micronized lactose were used as coating materials: crystalline and amorphous. At 4 °C and 21 °C, the coated powders sink and are reconstituted faster than pure whole milk powder, regardless of the stirring rate applied. At 40/60 °C and 400 rpm, although the amorphous micronized lactose coating leads to a significant decrease in the reconstitution time, the crystalline coating has the opposite effect (or no effect). This discrepancy is related to the large differences in terms of dissolution enthalpy between the two micronized lactose physical states. It is posited that the dissolution of the coating material causes a temperature shift at the powder-water interface which could hamper the complete melting of surface fat and influence its viscosity, thereby affecting wetting and sinking. These differences are overcome at a high stirring rate (800 rpm) or if agglomerated whole milk powder is used as the host material.


Assuntos
Lactose , Leite , Animais , Cinética , Pós
9.
Phys Chem Chem Phys ; 23(44): 25114-25125, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34714315

RESUMO

Several bottom-up chemical routes have been developed in the last few years to find ways to grow new forms of nanocarbon by devising a strategical selection of molecular precursors. Here, theoretical calculations are performed on 2D nanocarbon allotropes obtained from the fusion of triphenylene-like units through tetragonal rings. This 2D triphenylene structure has a metallic character in a closed shell configuration, but it also features a spin-polarized semiconducting state. The behavior of the electronic properties of the system is investigated when the structure is cast into nanoribbon forms. It is found that to be metallic in the nonpolarized case, the ribbons must be sufficiently wide while narrow 1D systems are semiconducting. A lower threshold width is also needed for the emergence of a spin-polarized semiconducting configuration in these nanoribbons. These behaviors are robust as they do not depend on edge geometry and chirality, thus offering opportunities for their possible applications in nanoscale devices.

10.
Phys Chem Chem Phys ; 23(23): 13204-13215, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34085086

RESUMO

Theoretical analysis based on density functional theory describes the microscopic origins of emerging electronic and magnetic properties in quasi-1D nitrogen-rich graphene nanoribbon structures with chevron-like (or wiggle-edged) configurations. The study focuses on systems with structural units composed of hexagonal graphitic units featuring one and two nitrogen atoms substituted in the graphitic structure, in positions contrasting with the more commonly considered pyridinic configurations. This type of substitution introduces nitrogen levels close to the Fermi level which in turn induce spin polarization depending on a number of structural features. We demonstrate that these systems present a broader set of electronic and magnetic behaviors relative to their pure hydrocarbon counterparts, with the possibility of engineering the electronic band gap strategically using different spin configurations and positions of the substituting nitrogen atoms.

11.
Nature ; 590(7846): 405-409, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597759

RESUMO

Twisted bilayer graphene is created by slightly rotating the two crystal networks in bilayer graphene with respect to each other. For small twist angles, the material undergoes a self-organized lattice reconstruction, leading to the formation of a periodically repeated domain1-3. The resulting superlattice modulates the vibrational3,4 and electronic5,6 structures within the material, leading to changes in the behaviour of electron-phonon coupling7,8 and to the observation of strong correlations and superconductivity9. However, accessing these modulations and understanding the related effects are challenging, because the modulations are too small for experimental techniques to accurately resolve the relevant energy levels and too large for theoretical models to properly describe the localized effects. Here we report hyperspectral optical images, generated by a nano-Raman spectroscope10, of the crystal superlattice in reconstructed (low-angle) twisted bilayer graphene. Observations of the crystallographic structure with visible light are made possible by the nano-Raman technique, which reveals the localization of lattice dynamics, with the presence of strain solitons and topological points1 causing detectable spectral variations. The results are rationalized by an atomistic model that enables evaluation of the local density of the electronic and vibrational states of the superlattice. This evaluation highlights the relevance of solitons and topological points for the vibrational and electronic properties of the structures, particularly for small twist angles. Our results are an important step towards understanding phonon-related effects at atomic and nanometric scales, such as Jahn-Teller effects11 and electronic Cooper pairing12-14, and may help to improve device characterization15 in the context of the rapidly developing field of twistronics16.

12.
ACS Appl Mater Interfaces ; 12(50): 55982-55993, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33283493

RESUMO

The adsorption and activation of CO2 molecules on the surface of photocatalysts are critical steps to realize efficient solar energy-induced CO2 conversion to valuable chemicals. In this work, a defect engineering approach of a high-valence cation Nb-doping into TiO2 was developed, which effectively enhanced the adsorption and activation of CO2 molecules on the Nb-doped TiO2 surface. A highly ordered Nb-doped TiO2 nanotube array was prepared by anodization of the Ti-Nb alloy foil and subsequent annealing at 550 °C in air for 2 h for its crystallization. Our sample showed a superior photocatalytic CO2 reduction performance under simulated solar illumination. The main CO2 reduction product was a higher-energy compound of acetaldehyde, which could be easily transported and stored and used to produce various key chemicals as intermediates. The acetaldehyde production rate was over ∼500 µmol·g-1·h-1 with good stability for repeated long-time uses, and it also demonstrated a superior product selectivity to acetaldehyde of over 99%. Our work reveals that the Nb-doped TiO2 nanotube array could be a promising candidate with high efficiency and good product selectivity for the photocatalytic CO2 reduction with solar energy.

13.
Nanotechnology ; 32(9)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33232946

RESUMO

Doping of two-dimensional (2D) semiconductors has been intensively studied toward modulating their electrical, optical, and magnetic properties. While ferromagnetic 2D semiconductors hold promise for future spintronics and valleytronics, the origin of ferromagnetism in 2D materials remains unclear. Here, we show that substitutional Fe-doping of MoS2and WS2monolayers induce different magnetic properties. The Fe-doped monolayers are directly synthesized via chemical vapor deposition. In both cases, Fe substitutional doping is successfully achieved, as confirmed using scanning transmission electron microscopy. While both Fe:MoS2and Fe:WS2show PL quenching and n-type doping, Fe dopants in WS2monolayers are found to assume deep-level trap states, in contrast to the case of Fe:MoS2, where the states are found to be shallow. Usingµm- and mm-precision local NV-magnetometry and superconducting quantum interference device, we discover that, unlike MoS2monolayers, WS2monolayers do not show a magnetic phase transition to ferromagnetism upon Fe-doping. The absence of ferromagnetism in Fe:WS2is corroborated using density functional theory calculations.

14.
Phys Chem Chem Phys ; 22(40): 23195-23206, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026379

RESUMO

Tripentaphenes are 2D nanocarbon lattices conceptually obtained from the assembly of acepentalene units. In this work, density functional theory is used to investigate their structural, electronic, and vibrational properties. Their bonding configuration is rationalized with a resonance mechanism, which is unique to each of the 2D assemblies. Their formation energies are found to lie within the range of other previously synthesized carbon nanostructures and phonon calculations indicate their dynamical stability. In addition, all studied tripentaphenes are metallic and display different features (e.g., Dirac cone) depending on the details of the atomic structure. The resonance structure also plays an important role in determining the electronic properties as it leads to delocalized electronic states, further highlighting the potential of the structures in nanoelectronics.

15.
Nano Lett ; 20(8): 5929-5935, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32639741

RESUMO

The experimental identification of structural transitions in layered black phosphorus (BP) under mechanical stress is essential to extend its application in microelectromechanical (MEMS) devices under harsh conditions. High-pressure Raman spectroscopic analysis of BP flakes suggests a transition pressure at ∼4.2 GPa, where the BP's crystal structure progressively transforms from an orthorhombic to a rhombohedral symmetry (blue phosphorus, bP). The phase transition has been identified by observing a transition from blueshift to redshift of the in-plane characteristic Raman modes (B2g and Ag2) with increasing pressure. Recovery of the vibrational frequencies for all three characteristic Raman modes confirms the reversibility of the structural phase transition. First-principles calculations provide insight into the behavior of the Raman modes of BP under high pressure and reveal the mechanism responsible for the partial phase transition from BP to bP, corresponding to a metastable equilibrium state where both phases coexist.

16.
ACS Nano ; 14(5): 6258-6268, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32330006

RESUMO

Hotspot engineering has the potential to transform the field of surface-enhanced Raman spectroscopy (SERS) by enabling ultrasensitive and reproducible detection of analytes. However, the ability to controllably generate SERS hotspots, with desired location and geometry, over large-area substrates, has remained elusive. In this study, we sculpt artificial edges in monolayer molybdenum disulfide (MoS2) by low-power focused laser-cutting. We find that when gold nanoparticles (AuNPs) are deposited on MoS2 by drop-casting, the AuNPs tend to accumulate predominantly along the artificial edges. First-principles density functional theory (DFT) calculations indicate strong binding of AuNPs with the artificial edges due to dangling bonds that are ubiquitous on the unpassivated (laser-cut) edges. The dense accumulation of AuNPs along the artificial edges intensifies plasmonic effects in these regions, creating hotspots exclusively along the artificial edges. DFT further indicates that adsorption of AuNPs along the artificial edges prompts a transition from semiconducting to metallic behavior, which can further intensify the plasmonic effect along the artificial edges. These effects are observed exclusively for the sculpted (i.e., cut) edges and not observed for the MoS2 surface (away from the cut edges) or along the natural (passivated) edges of the MoS2 sheet. To demonstrate the practical utility of this concept, we use our substrate to detect Rhodamine B (RhB) with a large SERS enhancement (∼104) at the hotspots for RhB concentrations as low as ∼10-10 M. The single-step laser-etching process reported here can be used to controllably generate arrays of SERS hotspots. As such, this concept offers several advantages over previously reported SERS substrates that rely on electrochemical deposition, e-beam lithography, nanoimprinting, or photolithography. Whereas we have focused our study on MoS2, this concept could, in principle, be extended to a variety of 2D material platforms.

17.
Nat Commun ; 11(1): 2034, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341412

RESUMO

Two-dimensional semiconductors, including transition metal dichalcogenides, are of interest in electronics and photonics but remain nonmagnetic in their intrinsic form. Previous efforts to form two-dimensional dilute magnetic semiconductors utilized extrinsic doping techniques or bulk crystal growth, detrimentally affecting uniformity, scalability, or Curie temperature. Here, we demonstrate an in situ substitutional doping of Fe atoms into MoS2 monolayers in the chemical vapor deposition growth. The iron atoms substitute molybdenum sites in MoS2 crystals, as confirmed by transmission electron microscopy and Raman signatures. We uncover an Fe-related spectral transition of Fe:MoS2 monolayers that appears at 2.28 eV above the pristine bandgap and displays pronounced ferromagnetic hysteresis. The microscopic origin is further corroborated by density functional theory calculations of dipole-allowed transitions in Fe:MoS2. Using spatially integrating magnetization measurements and spatially resolving nitrogen-vacancy center magnetometry, we show that Fe:MoS2 monolayers remain magnetized even at ambient conditions, manifesting ferromagnetism at room temperature.

18.
Adv Mater ; 32(12): e1906054, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32048409

RESUMO

Graphene nanoribbons (GNRs) have attracted much interest due to their largely modifiable electronic properties. Manifestation of these properties requires atomically precise GNRs which can be achieved through a bottom-up synthesis approach. This has recently been applied to the synthesis of width-modulated GNRs hosting topological electronic quantum phases, with valence electronic properties that are well captured by the Su-Schrieffer-Heeger (SSH) model describing a 1D chain of interacting dimers. Here, ultralow bandgap GNRs with charge carriers behaving as massive Dirac fermions can be realized when their valence electrons represent an SSH chain close to the topological phase boundary, i.e., when the intra- and interdimer coupling become approximately equal. Such a system has been achieved via on-surface synthesis based on readily available pyrene-based precursors and the resulting GNRs are characterized by scanning probe methods. The pyrene-based GNRs (pGNRs) can be processed under ambient conditions and incorporated as the active material in a field effect transistor. A quasi-metallic transport behavior is observed at room temperature, whereas at low temperature, the pGNRs behave as quantum dots showing single-electron tunneling and Coulomb blockade. This study may enable the realization of devices based on carbon nanomaterials with exotic quantum properties.

19.
J Am Chem Soc ; 141(48): 18994-19001, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689101

RESUMO

Electron-phonon coupling in two-dimensional nanomaterials plays a fundamental role in determining their physical properties. Such interplay is particularly intriguing in semiconducting black phosphorus (BP) due to the highly anisotropic nature of its electronic structure and phonon dispersions. Here we report the direct observation of symmetry-dependent electron-phonon coupling in BP by performing the polarization-selective resonance Raman measurement in the visible and ultraviolet regimes, focusing on the out-of-plane Ag1 and in-plane Ag2 phonon modes. Their intrinsic resonance Raman excitation profiles (REPs) were extracted and quantitatively compared. The in-plane Ag2 mode exhibits remarkably strong resonance enhancement across the excitation wavelengths when the excitation polarization is parallel to the armchair (Ag2//AC) direction. In contrast, a dramatically weak resonance effect was observed for the same mode with the polarization parallel to zigzag (Ag2//ZZ) direction and for the out-of-plane Ag1 mode (Ag1//AC and Ag1//ZZ). Analysis on quantum perturbation theory and first-principles calculations on the anisotropic electron distributions in BP demonstrated that electron-phonon coupling considering the symmetry of the involved excited states and phonon vibration patterns is responsible for this phenomenon. Further analysis of the polarization-dependent REPs for Ag phonons allows us to resolve the existing controversies on the physical origin of Raman anomaly in BP and its dependence on excitation energy, sample thickness, phonon modes, and crystalline orientation. Our study gives deep insights into the underlying interplay between electrons and phonons in BP and paves the way for manipulating the electron-phonon coupling in anisotropic nanomaterials for future device applications.

20.
ACS Nano ; 13(11): 13083-13091, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31573799

RESUMO

Graphene nanoribbons (GNRs) have attracted considerable interest, as their atomically tunable structure makes them promising candidates for future electronic devices. However, obtaining detailed information about the length of GNRs has been challenging and typically relies on low-temperature scanning tunneling microscopy. Such methods are ill-suited for practical device application and characterization. In contrast, Raman spectroscopy is a sensitive method for the characterization of GNRs, in particular for investigating their width and structure. Here, we report on a length-dependent, Raman-active low-energy vibrational mode that is present in atomically precise, bottom-up-synthesized armchair graphene nanoribbons (AGNRs). Our Raman study demonstrates that this mode is present in all families of AGNRs and provides information on their length. Our spectroscopic findings are corroborated by scanning tunneling microscopy images and supported by first-principles calculations that allow us to attribute this mode to a longitudinal acoustic phonon. Finally, we show that this mode is a sensitive probe for the overall structural integrity of the ribbons and their interaction with technologically relevant substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA