Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2011): 20232284, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38018104

RESUMO

Geckos are a speciose and globally distributed clade of Squamata (lizards, including snakes and amphisbaenians) that are characterized by a host of modifications for nocturnal, scansorial and insectivorous ecologies. They are among the oldest divergences in the lizard crown, so understanding the origin of geckoes (Gekkota) is essential to understanding the origin of Squamata, the most species-rich extant tetrapod clade. However, the poor fossil record of gekkotans has obscured the sequence and timing of the assembly of their distinctive morphology. Here, we describe the first North American stem gekkotan based on a three-dimensionally preserved skull from the Morrison Formation of western North America. Despite its Late Jurassic age, the new species already possesses several key characteristics of the gekkotan skull along with retained ancestral features. We show that this new stem gekkotan, and several previously named species of uncertain phylogenetic relationships, comprise a widespread clade of early crown lizards, substantiating faunal homogeneity in Laurasia during the Late Jurassic that extended across disparate ecological, body-size and physiological classes.


Assuntos
Lagartos , Animais , Filogenia , Lagartos/anatomia & histologia , Crânio/anatomia & histologia , Serpentes , América do Norte
2.
R Soc Open Sci ; 10(10): 230968, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830017

RESUMO

Most living reptile diversity is concentrated in Squamata (lizards, including snakes), which have poorly known origins in space and time. Recently, †Cryptovaranoides microlanius from the Late Triassic of the United Kingdom was described as the oldest crown squamate. If true, this result would push back the origin of all major lizard clades by 30-65 Myr and suggest that divergence times for reptile clades estimated using genomic and morphological data are grossly inaccurate. Here, we use computed tomography scans and expanded phylogenetic datasets to re-evaluate the phylogenetic affinities of †Cryptovaranoides and other putative early squamates. We robustly reject the crown squamate affinities of †Cryptovaranoides, and instead resolve †Cryptovaranoides as a potential member of the bird and crocodylian total clade, Archosauromorpha. Bayesian total evidence dating supports a Jurassic origin of crown squamates, not Triassic as recently suggested. We highlight how features traditionally linked to lepidosaurs are in fact widespread across Triassic reptiles. Our study reaffirms the importance of critically choosing and constructing morphological datasets and appropriate taxon sampling to test the phylogenetic affinities of problematic fossils and calibrate the Tree of Life.

3.
Nat Commun ; 13(1): 7087, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446761

RESUMO

Squamata is the most diverse clade of terrestrial vertebrates. Although the origin of pan-squamates lies in the Triassic, the oldest undisputed members of extant clades known from nearly complete, uncrushed material come from the Cretaceous. Here, we describe three-dimensionally preserved partial skulls of two new crown lizards from the Late Jurassic of North America. Both species are placed at the base of the skink, girdled, and night lizard clade Pan-Scincoidea, which consistently occupies a position deep inside the squamate crown in both morphological and molecular phylogenies. The new lizards show that several features uniting pan-scincoids with another major lizard clade, the pan-lacertoids, in trees using morphology were convergently acquired as predicted by molecular analyses. Further, the palate of one new lizard bears a handful of ancestral saurian characteristics lost in nearly all extant squamates, revealing an underappreciated degree of complex morphological evolution in the early squamate crown. We find strong evidence for close relationships between the two new species and Cretaceous taxa from Eurasia. Together, these results suggest that early crown squamates had a wide geographic distribution and experienced complicated morphological evolution even while the Rhynchocephalia, now solely represented by the tuatara, was the dominant clade of lepidosaurs.


Assuntos
Lagartos , Animais , Lagartos/genética , América do Norte , Crânio , Árvores
4.
J Anat ; 241(6): 1441-1458, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36168715

RESUMO

The rapid radiation and dispersal of crown reptiles following the end-Permian mass extinction characterizes the earliest phase of the Mesozoic. Phylogenetically, this early radiation is difficult to interpret, with polytomies near the crown node, long ghost lineages, and enigmatic origins for crown group clades. Better understanding of poorly known taxa from this time can aid in our understanding of this radiation and Permo-Triassic ecology. Here, we describe an Early Triassic specimen of the diapsid Palacrodon from the Fremouw Formation of Antarctica. While Palacrodon is known throughout the Triassic and exhibits a cosmopolitan geographic range, little is known of its evolutionary relationships. We recover Palacrodon outside of crown reptiles (Sauria) but more crownward than Youngina capensis and other late Permian diapsids. Furthermore, Palacrodon possesses anatomical features that add clarity to the evolution of the stapes within the reptilian lineage, as well as incipient adaptations for arboreality and herbivory during the earliest phases of the Permo-Triassic recovery.


Assuntos
Evolução Biológica , Fósseis , Animais , Regiões Antárticas , Filogenia , Extinção Biológica , Répteis/anatomia & histologia
5.
Dev Dyn ; 250(1): 111-127, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492254

RESUMO

BACKGROUND: The extremely derived body plan of turtles has sparked a great interest in studying their developmental biology. Here, we describe the embryonic development of the Stinkpot, or common musk turtle (Sternotherus odoratus), a small aquatic turtle from the family Kinosternidae. RESULTS: We identify 20 distinct developmental stages, some comparable to stages described by previous studies on other turtles and some in between these, improving the resolution of the generalities of turtle development. We provide a detailed account of both the external morphology and skeletal development, as well as a general look at the early stages of muscular development until the attainment of the adult muscular anatomical pattern. CONCLUSIONS: Several potential skeletal and muscular apomorphies of turtles are identified or elaborated. The musk turtle, with its small size and hard-shelled egg, could become an important species for the study of turtle evolution and development, suitable for in ovo experimentation and late stage imaging of well-advanced anatomical features.


Assuntos
Desenvolvimento Musculoesquelético , Tartarugas/embriologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA