Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
medRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38903109

RESUMO

Deep brain stimulation is a viable and efficacious treatment option for dystonia. While the internal pallidum serves as the primary target, more recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its complex surroundings have not been studied in depth. Indeed, multiple historical targets that have been used for surgical treatment of dystonia are directly adjacent to the STN. Further, multiple types of dystonia exist, and outcomes are variable, suggesting that not all types would profit maximally from the exact same target. Therefore, a thorough investigation of the neural substrates underlying effects on dystonia symptoms is warranted. Here, we analyze a multi-center cohort of isolated dystonia patients with subthalamic implantations (N = 58) and relate their stimulation sites to improvement of appendicular and cervical symptoms as well as blepharospasm. Stimulation of the ventral oral posterior nucleus of thalamus and surrounding regions was associated with improvement in cervical dystonia, while stimulation of the dorsolateral STN was associated with improvement in limb dystonia and blepharospasm. This dissociation was also evident for structural connectivity, where the cerebellothalamic, corticospinal and pallidosubthalamic tracts were associated with improvement of cervical dystonia, while hyperdirect and subthalamopallidal pathways were associated with alleviation of limb dystonia and blepharospasm. Importantly, a single well-placed electrode may reach the three optimal target sites. On the level of functional networks, improvement of limb dystonia was correlated with connectivity to the corresponding somatotopic regions in primary motor cortex, while alleviation of cervical dystonia was correlated with connectivity to the recently described 'action-mode' network that involves supplementary motor and premotor cortex. Our findings suggest that different types of dystonia symptoms are modulated via distinct networks. Namely, appendicular dystonia and blepharospasm are improved with modulation of the basal ganglia, and, in particular, the subthalamic circuitry, including projections from the primary motor cortex. In contrast, cervical dystonia was more responsive when engaging the cerebello-thalamo-cortical circuit, including direct stimulation of ventral thalamic nuclei. These findings may inform DBS targeting and image-based programming strategies for patient-specific treatment of dystonia.

3.
Biol Psychiatry ; 96(2): 101-113, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141909

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS: Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS: DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS: Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.


Assuntos
Estimulação Encefálica Profunda , Cápsula Interna , Transtorno Obsessivo-Compulsivo , Humanos , Transtorno Obsessivo-Compulsivo/terapia , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Cápsula Interna/diagnóstico por imagem , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/fisiopatologia , Resultado do Tratamento , Adulto Jovem
4.
Neuroimage ; 242: 118478, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403744

RESUMO

Understanding how the brain processes reward is an important and complex endeavor, which has involved the use of a range of complementary neuroimaging tools, including electroencephalography (EEG). EEG has been praised for its high temporal resolution but, because the signal recorded at the scalp is a mixture of brain activities, it is often considered to have poor spatial resolution. Besides, EEG data analysis has most often relied on event-related potentials (ERPs) which cancel out non-phase locked oscillatory activity, thus limiting the functional discriminative power of EEG attainable through spectral analyses. Because these three dimensions -temporal, spatial and spectral- have been unequally leveraged in reward studies, we argue that the full potential of EEG has not been exploited. To back up our claim, we first performed a systematic survey of EEG studies assessing reward processing. Specifically, we report on the nature of the cognitive processes investigated (i.e., reward anticipation or reward outcome processing) and the methods used to collect and process the EEG data (i.e., event-related potential, time-frequency or source analyses). A total of 359 studies involving healthy subjects and the delivery of monetary rewards were surveyed. We show that reward anticipation has been overlooked (88% of studies investigated reward outcome processing, while only 24% investigated reward anticipation), and that time-frequency and source analyses (respectively reported by 19% and 12% of the studies) have not been widely adopted by the field yet, with ERPs still being the dominant methodology (92% of the studies). We argue that this focus on feedback-related ERPs provides a biased perspective on reward processing, by ignoring reward anticipation processes as well as a large part of the information contained in the EEG signal. Finally, we illustrate with selected examples how addressing these issues could benefit the field, relying on approaches combining time-frequency analyses, blind source separation and source localization.


Assuntos
Antecipação Psicológica/fisiologia , Eletroencefalografia/métodos , Recompensa , Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Humanos , Motivação
5.
Brain ; 143(12): 3734-3747, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320929

RESUMO

Impulse control disorders (ICDs) in Parkinson's disease have been associated with dysfunctions in the control of value- or reward-based responding (choice impulsivity) and abnormalities in mesocorticolimbic circuits. The hypothesis that dysfunctions in the control of response inhibition (action impulsivity) also play a role in Parkinson's disease ICDs has recently been raised, but the underlying neural mechanisms have not been probed directly. We used high-resolution EEG recordings from 41 patients with Parkinson's disease with and without ICDs to track the spectral and dynamical signatures of different mechanisms involved in inhibitory control in a simple visuomotor task involving no selection between competing responses and no reward to avoid potential confounds with reward-based decision. Behaviourally, patients with Parkinson's disease with ICDs proved to be more impulsive than those without ICDs. This was associated with decreased beta activity in the precuneus and in a region of the medial frontal cortex centred on the supplementary motor area. The underlying dynamical patterns pinpointed dysfunction of proactive inhibitory control, an executive mechanism intended to gate motor responses in anticipation of stimulation in uncertain contexts. The alteration of the cortical drive of proactive response inhibition in Parkinson's disease ICDs pinpoints the neglected role the precuneus might play in higher order executive functions in coordination with the supplementary motor area, specifically for switching between executive settings. Clinical perspectives are discussed in the light of the non-dopaminergic basis of this function.


Assuntos
Transtornos Disruptivos, de Controle do Impulso e da Conduta/psicologia , Inibição Psicológica , Transtornos Parkinsonianos/psicologia , Idoso , Ritmo beta , Mapeamento Encefálico , Comportamento de Escolha , Transtornos Disruptivos, de Controle do Impulso e da Conduta/etiologia , Eletroencefalografia , Função Executiva , Feminino , Humanos , Comportamento Impulsivo , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Lobo Parietal/fisiopatologia , Transtornos Parkinsonianos/complicações , Desempenho Psicomotor
6.
Neurosci Biobehav Rev ; 98: 164-176, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30639672

RESUMO

Impulse control disorders (ICDs) in Parkinson's disease (PD) are associated with dopaminergic dysfunction and treatment, but have no satisfactory therapeutic solution. While studies assessing the neurofunctional bases of ICDs are important for advancing our understanding and management of ICDs, they remain sparse and inconsistent. Based on a systematic analysis of the neuroimaging literature, the present review pinpoints various abnormalities beyond the mesocorticolimbic circuit that supports reward processing, suggesting possible dysfunction at the sensorimotor, executive and affective levels. We advocate that: 1) Future studies should use more sophisticated psychological models and behavioral designs that take into account the potentially multifaceted aspect of ICDs; this would allow a more accurate assessment of the underlying neurocognitive processes, which are not all dependent on the dopaminergic system. 2) Future neuroimaging studies should rely more strongly on task-based, event-related analyses to disentangle the various mechanisms that can be dysfunctional in ICDs. We believe these guidelines constitute a prerequisite towards distinguishing causes, correlates and individual susceptibility factors of PD patients with ICDs.


Assuntos
Corpo Estriado/fisiopatologia , Transtornos Disruptivos, de Controle do Impulso e da Conduta/fisiopatologia , Neuroimagem , Doença de Parkinson/fisiopatologia , Animais , Corpo Estriado/diagnóstico por imagem , Transtornos Disruptivos, de Controle do Impulso e da Conduta/diagnóstico por imagem , Guias como Assunto , Humanos , Neuroimagem/métodos , Doença de Parkinson/diagnóstico por imagem , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA