Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cells ; 12(14)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37508508

RESUMO

Astrocytes are critical players in brain health and disease. Brain pathologies and lesions are usually accompanied by astroglial alterations known as reactive astrogliosis. Sphingosine 1-phosphate lyase (SGPL1) catalysis, the final step in sphingolipid catabolism, irreversibly cleaves its substrate sphingosine 1-phosphate (S1P). We have shown that neural ablation of SGPL1 causes accumulation of S1P and hence neuronal damage, cognitive deficits, as well as microglial activation. Moreover, the S1P/S1P-receptor signaling axis enhances ATP production in SGPL1-deficient astrocytes. Using immunohistochemical methods as well as RNA Seq and CUT&Tag we show how S1P signaling causes activation of the astrocytic purinoreceptor P2Y1 (P2Y1R). With specific pharmacological agonists and antagonists, we uncover the P2Y1R as the key player in S1P-induced astrogliosis, and DDX3X mediated the activation of the NLRP3 inflammasome, including caspase-1 and henceforward generation of interleukin-1ß (IL-1ß) and of other proinflammatory cytokines. Our results provide a novel route connecting S1P metabolism and signaling with astrogliosis and the activation of the NLRP3 inflammasome, a central player in neuroinflammation, known to be crucial for the pathogenesis of numerous brain illnesses. Thus, our study opens the door for new therapeutic strategies surrounding S1P metabolism and signaling in the brain.


Assuntos
Inflamassomos , Liases , Encéfalo , Gliose , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos
2.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239854

RESUMO

Microglia, the resident immune cells of the central nervous system, play important roles in brain homeostasis as well as in neuroinflammation, neurodegeneration, neurovascular diseases, and traumatic brain injury. In this context, components of the endocannabinoid (eCB) system have been shown to shift microglia towards an anti-inflammatory activation state. Instead, much less is known about the functional role of the sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) system in microglia biology. In the present study, we addressed potential crosstalk of the eCB and the S1P systems in BV2 mouse microglia cells challenged with lipopolysaccharide (LPS). We show that URB597, the selective inhibitor of fatty acid amide hydrolase (FAAH)-the main degradative enzyme of the eCB anandamide-prevented LPS-induced production of tumor necrosis factor-α (TNFα) and interleukin-1ß (IL-1ß), and caused the accumulation of anandamide itself and eCB-like molecules such as oleic acid and cis-vaccenic acid ethanolamide, palmitoylethanolamide, and docosahexaenoyl ethanolamide. Furthermore, treatment with JWH133, a selective agonist of the eCB-binding cannabinoid 2 (CB2) receptor, mimicked the anti-inflammatory effects of URB597. Interestingly, LPS induced transcription of both SphK1 and SphK2, and the selective inhibitors of SphK1 (SLP7111228) and SphK2 (SLM6031434) strongly reduced LPS-induced TNFα and IL-1ß production. Thus, the two SphKs were pro-inflammatory in BV2 cells in a non-redundant manner. Most importantly, the inhibition of FAAH by URB597, as well as the activation of CB2 by JWH133, prevented LPS-stimulated transcription of SphK1 and SphK2. These results present SphK1 and SphK2 at the intersection of pro-inflammatory LPS and anti-inflammatory eCB signaling, and suggest the further development of inhibitors of FAAH or SphKs for the treatment of neuroinflammatory diseases.


Assuntos
Endocanabinoides , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Endocanabinoides/farmacologia , Lipopolissacarídeos/farmacologia , Microglia , Esfingosina/farmacologia , Anti-Inflamatórios/farmacologia
3.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638955

RESUMO

Sphingosine 1 phosphate (S1P) lyase (Sgpl1) catalyses the irreversible cleavage of S1P and thereby the last step of sphingolipid degradation. Loss of Sgpl1 in humans and mice leads to accumulation of sphingolipids and multiple organ injuries. Here, we addressed the role of hepatocyte Sgpl1 for regulation of sphingolipid homoeostasis by generating mice with hepatocyte-specific deletion of Sgpl1 (Sgpl1HepKO mice). Sgpl1HepKO mice had normal body weight, liver weight, liver structure and liver enzymes both at the age of 8 weeks and 8 months. S1P, sphingosine and ceramides, but not glucosylceramides or sphingomyelin, were elevated by ~1.5-2-fold in liver, and this phenotype did not progress with age. Several ceramides were elevated in plasma, while plasma S1P was normal. Interestingly, S1P and glucosylceramides, but not ceramides, were elevated in bile of Sgpl1HepKO mice. Furthermore, liver cholesterol was elevated, while LDL cholesterol decreased in 8-month-old mice. In agreement, the LDL receptor was upregulated, suggesting enhanced uptake of LDL cholesterol. Expression of peroxisome proliferator-activated receptor-γ, liver X receptor and fatty acid synthase was unaltered. These data show that mouse hepatocytes largely compensate the loss of Sgpl1 by secretion of accumulating sphingolipids in a specific manner into blood and bile, so that they can be excreted or degraded elsewhere.


Assuntos
Aldeído Liases/genética , Aldeído Liases/metabolismo , Bile/metabolismo , Fígado/metabolismo , Esfingolipídeos/sangue , Animais , Células Cultivadas , Ceramidas/metabolismo , LDL-Colesterol/metabolismo , Técnicas de Inativação de Genes , Hepatócitos/metabolismo , Homeostase/genética , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Receptores de LDL/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
4.
iScience ; 24(4): 102266, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33817572

RESUMO

Ebola virus (EBOV) is responsible for outbreaks with case fatality rates of up to 90% and for an epidemic in West Africa with more than ten thousand deaths. EBOV glycoprotein (EBOV-GP) is the only viral surface protein and is responsible for viral entry into cells. Here, by employing pseudotyped EBOV-GP viral particles, we uncover a critical role for sphingolipids in inhibiting viral entry. Sphingosine kinase 1 (SphK1) catalyzes the phosphorylation of sphingosine to sphingosine 1-phosphate (S1P). The administration of the SphK1 activator, K6PC-5, or S1P, or the overexpression of SphK1 consistently exhibited striking inhibitory effects in EBOV-GP-driven entry in diverse cell lines. Finally, K6PC-5 markedly reduced the EBOV titer in infected cells and the de novo production of viral proteins. These data present K6PC-5 as an efficient tool to inhibit EBOV infection in endothelial cells and suggest further studies to evaluate its systemic effects.

5.
Blood ; 137(12): 1641-1651, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33529332

RESUMO

Secreted modular calcium-binding protein 1 (SMOC1) is an osteonectin/SPARC-related matricellular protein, whose expression is regulated by microRNA-223 (miR-223). Given that platelets are rich in miR-223, this study investigated the expression of SMOC1 and its contribution to platelet function. Human and murine platelets expressed SMOC1, whereas platelets from SMOC1+/- mice did not present detectable mature SMOC1 protein. Platelets from SMOC1+/- mice demonstrated attenuated responsiveness to thrombin (platelet neutrophil aggregate formation, aggregation, clot formation, Ca2+ increase, and ß3 integrin phosphorylation), whereas responses to other platelet agonists were unaffected. SMOC1 has been implicated in transforming growth factor-ß signaling, but no link to this pathway was detected in platelets. Rather, the SMOC1 Kazal domain directly bound thrombin to potentiate its activity in vitro, as well as its actions on isolated platelets. The latter effects were prevented by monoclonal antibodies against SMOC1. Platelets from miR-223-deficient mice expressed high levels of SMOC1 and exhibited hyperreactivity to thrombin that was also reversed by preincubation with monoclonal antibodies against SMOC1. Similarly, SMOC1 levels were markedly upregulated in platelets from individuals with type 2 diabetes, and the SMOC1 antibody abrogated platelet hyperresponsiveness to thrombin. Taken together, we have identified SMOC1 as a novel thrombin-activating protein that makes a significant contribution to the pathophysiological changes in platelet function associated with type 2 diabetes. Thus, strategies that target SMOC1 or its interaction with thrombin may be attractive therapeutic approaches to normalize platelet function in diabetes.


Assuntos
Plaquetas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Osteonectina/metabolismo , Trombina/metabolismo , Adulto , Animais , Plaquetas/citologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ativação Plaquetária , Agregação Plaquetária
6.
Cells ; 9(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003441

RESUMO

Diverse extracellular signals induce plasma membrane translocation of sphingosine kinase-1 (SphK1), thereby enabling inside-out signaling of sphingosine-1-phosphate. We have shown before that Gq-coupled receptors and constitutively active Gαq/11 specifically induced a rapid and long-lasting SphK1 translocation, independently of canonical Gq/phospholipase C (PLC) signaling. Here, we further characterized Gq/11 regulation of SphK1. SphK1 translocation by the M3 receptor in HEK-293 cells was delayed by expression of catalytically inactive G-protein-coupled receptor kinase-2, p63Rho guanine nucleotide exchange factor (p63RhoGEF), and catalytically inactive PLCß3, but accelerated by wild-type PLCß3 and the PLCδ PH domain. Both wild-type SphK1 and catalytically inactive SphK1-G82D reduced M3 receptor-stimulated inositol phosphate production, suggesting competition at Gαq. Embryonic fibroblasts from Gαq/11 double-deficient mice were used to show that amino acids W263 and T257 of Gαq, which interact directly with PLCß3 and p63RhoGEF, were important for bradykinin B2 receptor-induced SphK1 translocation. Finally, an AIXXPL motif was identified in vertebrate SphK1 (positions 100-105 in human SphK1a), which resembles the Gαq binding motif, ALXXPI, in PLCß and p63RhoGEF. After M3 receptor stimulation, SphK1-A100E-I101E and SphK1-P104A-L105A translocated in only 25% and 56% of cells, respectively, and translocation efficiency was significantly reduced. The data suggest that both the AIXXPL motif and currently unknown consequences of PLCß/PLCδ(PH) expression are important for regulation of SphK1 by Gq/11.


Assuntos
Membrana Celular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Membrana Celular/genética , Cromatografia Líquida de Alta Pressão , Fibroblastos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Receptor B2 da Bradicinina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/genética , Esfingosina/metabolismo , Espectrometria de Massas em Tandem , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-32283310

RESUMO

Sphingosine-1-phosphate (S1P) is not only a catabolic intermediate of all sphingolipids but also an evolutionary conserved bioactive lipid with critical functions in cell survival, differentiation, and migration as well as in immunity and angiogenesis. S1P-lyase (SGPL1) irreversibly cleaves S1P in the final step of sphingolipid catabolism. As sphingoid bases and their 1-phosphates are not only metabolic intermediates but also highly bioactive lipids that modulate a wide range of physiological processes, it would be predicted that their elevation might induce adjustments in other facets of sphingolipid metabolism and/or alter cell behavior. We actually found in a previous study that in terminally differentiated neurons SGPL1 deficiency increases sphingolipid formation via recycling at the expense of de novo synthesis. We now investigated whether and how SGPL1 deficiency affects the metabolism of (glyco)sphingolipids in mouse embryonic fibroblasts (MEFs). According to our previous experiments in neurons, we found a strong accumulation of S1P in SGPL1-deficient MEFs. Surprisingly, a completely different situation arose as we analyzed sphingolipid metabolism in this non-differentiated cell type. The production of biosynthetic precursors of complex glycosphingolipids including ceramide, glucosylceramide and also ganglioside GM3 via de novo synthesis and recycling pathway was substantially increased whereas the amount of more complex gangliosides dropped significantly.


Assuntos
Aldeído Liases/deficiência , Aldeído Liases/metabolismo , Carcinogênese , Gangliosídeos/biossíntese , Animais , Células Cultivadas , Gangliosídeos/análise , Camundongos , Camundongos Knockout
8.
Artigo em Inglês | MEDLINE | ID: mdl-32244061

RESUMO

Sphingosine kinases (SphK) catalyse the formation of sphingosine-1-phosphate (S1P) and play important roles in the cardiovascular, nervous and immune systems. We have shown before that Gq-coupled receptors induce a rapid and long-lasting translocation of SphK1 to the plasma membrane and cross-activation of S1P receptors. Here, we further addressed Gq regulation of SphK1 by analysing the influence of the WD40 repeat protein, WDR36. WDR36 has been described as a scaffold tethering Gαq to phospholipase C (PLC)-ß and the thromboxane A2 receptor-ß (TPß receptor). Overexpression of WDR36 in HEK-293 cells enhanced TPß receptor-induced inositol phosphate production, as reported (Cartier et al. 2011), but significantly attenuated inositol phosphate production induced by muscarinic M3 and bradykinin B2 receptors. In agreement with its effect on PLCß, WDR36 augmented TPß receptor-induced [Ca2+]i increases. Surprisingly, WDR36 also augmented M3 receptor-induced [Ca2+]i increases, which was due to increased Ca2+ mobilization while the Ca2+ content of thapsigargin-sensitive stores remained unaltered. Interestingly, overexpression of WDR36 significantly delayed SphK1 translocation by Gq-coupled M3, B2 and H1 receptors in HEK-293 cells, while TPß receptor-induced SphK1 translocation was generally slow and not altered by WDR36 in these cells. Finally, in C2C12 myoblasts, overexpression of WDR36 delayed SphK1 translocation induced by B2 receptors. It is concluded that WDR36 reduces signalling of Gq-coupled receptors other than TPß towards PLC and SphK1, most likely by scavenging Gαq and PLCß. Our results support a role of WDR36 in orchestration of Gq signalling complexes, and might help to functionally unravel its genetic association with asthma and allergy.


Assuntos
Proteínas do Olho/metabolismo , Fosfolipase C beta/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Tromboxanos/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Proteínas do Olho/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos , Mioblastos/metabolismo
9.
FASEB J ; 34(3): 3932-3942, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944406

RESUMO

Sphingosine 1-phosphate (S1P) signaling influences numerous cell biological mechanisms such as differentiation, proliferation, survival, migration, and angiogenesis. Intriguingly, our current knowledge is based solely on the role of S1P with an 18-carbon long-chain base length, S1P d18:1. Depending on the composition of the first and rate-limiting enzyme of the sphingolipid de novo metabolism, the serine palmitoyltransferase, other chain lengths have been described in vivo. While cells are also able to produce S1P d20:1, its abundance and function remains elusive so far. Our experiments are highlighting the role of S1P d20:1 in the mouse central nervous system (CNS) and human glioblastoma. We show here that S1P d20:1 and its precursors are detectable in both healthy mouse CNS-tissue and human glioblastoma. On the functional level, we focused our work on one particular, well-characterized pathway, the induction of cyclooxygenase (COX)-2 expression via the S1P receptor 2 (S1P2 ). Intriguingly, S1P d20:1 only fairly induces COX-2 expression and can block the S1P d18:1-induced COX-2 expression mediated via S1P2 activation in the human glioblastoma cell line LN229. This data indicates that S1P d20:1 might act as an endogenous modulator of S1P signaling via a partial agonism at the S1P2 receptor. While our findings might stimulate further research on the relevance of long-chain base lengths in sphingolipid signaling, the metabolism of S1P d20:1 has to be considered as an integral part of S1P signaling pathways in vivo.


Assuntos
Sistema Nervoso Central/metabolismo , Glioblastoma/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Western Blotting , Células CHO , Linhagem Celular Tumoral , Cromatografia Líquida , Cricetulus , Ciclo-Oxigenase 2/metabolismo , Humanos , Camundongos , Reação em Cadeia da Polimerase , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Esfingosina/metabolismo , Espectrometria de Massas em Tandem
10.
FASEB J ; 33(2): 1711-1726, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30188757

RESUMO

Sphingosine-1-phosphate (S1P) is involved in the regulation of important cellular processes, including immune-cell trafficking and proliferation. Altered S1P signaling is strongly associated with inflammation, cancer progression, and atherosclerosis; however, the mechanisms underlying its pathophysiologic effects are only partially understood. This study evaluated the effects of S1P in vitro and in vivo on the biosynthesis of leukotrienes (LTs), which form a class of lipid mediators involved in the pathogenesis of inflammatory diseases. Here, we report for the first time that S1P potently suppresses LT biosynthesis in Ca2+-ionophore-stimulated intact human neutrophils. S1P treatment resulted in intracellular Ca2+ mobilization, perinuclear translocation, and finally irreversible suicide inactivation of the LT biosynthesis key enzyme 5-lipoxygenase (5-LO). Agonist studies and S1P receptor mRNA expression analysis provided evidence for a S1P receptor 4-mediated effect, which was confirmed by a functional knockout of S1P4 in HL60 cells. Systemic administration of S1P in wild-type mice decreased both macrophage and neutrophil migration in the lungs in response to LPS and significantly attenuated 5-LO product formation, whereas these effects were abrogated in 5-LO or S1P4 knockout mice. In summary, targeting the 5-LO pathway is an important mechanism to explain S1P-mediated pathophysiologic effects. Furthermore, agonism at S1P4 represents a novel effective strategy in pharmacotherapy of inflammation.-Fettel, J., Kühn, B., Guillen, N. A., Sürün, D., Peters, M., Bauer, R., Angioni, C., Geisslinger, G., Schnütgen, F., Meyer zu Heringdorf, D., Werz, O., Meybohm, P., Zacharowski, K., Steinhilber, D., Roos, J., Maier, T. J. Sphingosine-1-phosphate (S1P) induces potent anti-inflammatory effects in vitro and in vivo by S1P receptor 4-mediated suppression of 5-lipoxygenase activity.


Assuntos
Anti-Inflamatórios/farmacologia , Araquidonato 5-Lipoxigenase/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Animais , Araquidonato 5-Lipoxigenase/biossíntese , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Linhagem Celular , Feminino , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/enzimologia , Neutrófilos/metabolismo , Pneumonia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Esfingosina/farmacologia , Especificidade por Substrato
11.
Int J Mol Sci ; 19(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772789

RESUMO

Sphingosine kinase (SK) catalyses the formation of sphingosine 1-phosphate (S1P), which acts as a key regulator of inflammatory and fibrotic reactions, mainly via S1P receptor activation. Here, we show that in the human renal proximal tubular epithelial cell line HK2, the profibrotic mediator transforming growth factor ß (TGFß) induces SK-1 mRNA and protein expression, and in parallel, it also upregulates the expression of the fibrotic markers connective tissue growth factor (CTGF) and fibronectin. Stable downregulation of SK-1 by RNAi resulted in the increased expression of CTGF, suggesting a suppressive effect of SK-1-derived intracellular S1P in the fibrotic process, which is lost when SK-1 is downregulated. In a further approach, the S1P transporter Spns2, which is known to export S1P and thereby reduces intracellular S1P levels, was stably downregulated in HK2 cells by RNAi. This treatment decreased TGFß-induced CTGF and fibronectin expression, and it abolished the strong induction of the monocyte chemotactic protein 1 (MCP-1) by the pro-inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)-1ß. Moreover, it enhanced the expression of aquaporin 1, which is an important water channel that is expressed in the proximal tubules, and reverted aquaporin 1 downregulation induced by IL-1ß/TNFα. On the other hand, overexpression of a Spns2-GFP construct increased S1P secretion and it resulted in enhanced TGFß-induced CTGF expression. In summary, our data demonstrate that in human renal proximal tubular epithelial cells, SK-1 downregulation accelerates an inflammatory and fibrotic reaction, whereas Spns2 downregulation has an opposite effect. We conclude that Spns2 represents a promising new target for the treatment of tubulointerstitial inflammation and fibrosis.


Assuntos
Proteínas de Transporte de Ânions/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Túbulos Renais Proximais/metabolismo , Biomarcadores , Células Cultivadas , Regulação para Baixo , Células Epiteliais/patologia , Fibrose , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Inflamação , Túbulos Renais Proximais/patologia , Lisofosfolipídeos/metabolismo , Podócitos/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo
12.
Cell Signal ; 45: 110-121, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29408301

RESUMO

Skeletal muscle tissue retains a remarkable regenerative capacity due to the activation of resident stem cells that in pathological conditions or after tissue damage proliferate and commit themselves into myoblasts. These immature myogenic cells undergo differentiation to generate new myofibers or repair the injured ones, giving a strong contribution to muscle regeneration. Cytokines and growth factors, potently released after tissue injury by leukocytes and macrophages, are not only responsible of the induction of the initial inflammatory response, but can also affect skeletal muscle regeneration. Growth factors exploit sphingosine kinase (SK), the enzyme that catalyzes the production of sphingosine 1-phosphate (S1P), to exert their biological effects in skeletal muscle. In this paper we show for the first time that bradykinin (BK), the leading member of kinin/kallikrein system, is able to induce myogenic differentiation in C2C12 myoblasts. Moreover, evidence is provided that SK1, the specific S1P-transporter spinster homolog 2 (Spns2) and S1P2 receptor are involved in the action exerted by BK, since pharmacological inhibition/antagonism or specific down-regulation significantly alter BK-induced myogenic differentiation. Moreover, the molecular mechanism initiated by BK involves a rapid translocation of SK1 to plasma membrane, analyzed by time-lapse immunofluorescence analysis. The present study highlights the role of SK1/Spns2/S1P receptor 2 signaling axis in BK-induced myogenic differentiation, thus confirming the crucial involvement of this pathway in skeletal muscle cell biology.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Bradicinina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Mioblastos Esqueléticos/citologia , Receptores de Lisoesfingolipídeo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Linhagem Celular , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato
13.
Sci Rep ; 7: 43575, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262793

RESUMO

Sphingosine-1-phosphate (S1P) lyase irreversibly cleaves S1P, thereby catalysing the ultimate step of sphingolipid degradation. We show here that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1-/--MEFs), in which S1P and sphingosine accumulate, have features of Niemann-Pick disease type C (NPC) cells. In the presence of serum, overall cholesterol content was elevated in Sgpl1-/--MEFs, due to upregulation of the LDL receptor and enhanced cholesterol uptake. Despite this, activation of sterol regulatory element-binding protein-2 was increased in Sgpl1-/--MEFs, indicating a local lack of cholesterol at the ER. Indeed, free cholesterol was retained in NPC1-containing vesicles, which is a hallmark of NPC. Furthermore, upregulation of amyloid precursor protein in Sgpl1-/--MEFs was mimicked by an NPC1 inhibitor in Sgpl1+/+-MEFs and reduced by overexpression of NPC1. Lysosomal pH was not altered by S1P lyase deficiency, similar to NPC. Interestingly, lysosomal Ca2+ content and bafilomycin A1-induced [Ca2+]i increases were enhanced in Sgpl1-/--MEFs, contrary to NPC. These results show that both a primary defect in cholesterol trafficking and S1P lyase deficiency cause overlapping phenotypic alterations, and challenge the present view on the role of sphingosine in lysosomal Ca2+ homeostasis.


Assuntos
Aldeído Liases/deficiência , Cálcio/metabolismo , Colesterol/metabolismo , Fibroblastos/metabolismo , Lisossomos/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Aldeído Liases/sangue , Animais , Biomarcadores , Modelos Animais de Doenças , Histona Desacetilases , Homeostase , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Camundongos , Camundongos Knockout , Doença de Niemann-Pick Tipo C/diagnóstico , Fenótipo
14.
Front Pharmacol ; 7: 167, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445808

RESUMO

The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular.

15.
Biochim Biophys Acta ; 1851(5): 519-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25601519

RESUMO

Transforming growth factor ß2 (TGF-ß2) is well known to stimulate the expression of pro-fibrotic connective tissue growth factor (CTGF) in several cell types including human mesangial cells. The present study demonstrates that TGF-ß2 enhances sphingosine 1-phosphate receptor 5 (S1P5) mRNA and protein expression in a time and concentration dependent manner. Pharmacological and siRNA approaches reveal that this upregulation is mediated via activation of classical TGF-ß downstream effectors, Smad and mitogen-activated protein kinases. Most notably, inhibition of Gi with pertussis toxin and downregulation of S1P5 by siRNA block TGF-ß2-stimulated upregulation of CTGF, demonstrating that Gi coupled S1P5 is necessary for TGF-ß2-triggered expression of CTGF in human mesangial cells. Overall, these findings indicate that TGF-ß2 dependent upregulation of S1P5 is required for the induction of pro-fibrotic CTGF by TGF-ß. Targeting S1P5 might be an attractive novel approach to treat renal fibrotic diseases.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Mesangiais/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Células Mesangiais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fatores de Tempo , Transfecção , Regulação para Cima
16.
J Lipid Res ; 56(1): 60-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385827

RESUMO

Sphingosine 1-phosphate (S1P) is an extra- and intracellular mediator that regulates cell growth, survival, migration, and adhesion in many cell types. S1P lyase is the enzyme that irreversibly cleaves S1P and thereby constitutes the ultimate step in sphingolipid catabolism. It has been reported previously that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1(-/-)-MEFs) are resistant to chemotherapy-induced apoptosis through upregulation of B cell lymphoma 2 (Bcl-2) and Bcl-2-like 1 (Bcl-xL). Here, we demonstrate that the transporter proteins Abcc1/MRP1, Abcb1/MDR1, Abca1, and spinster-2 are upregulated in Sgpl1(-/-)-MEFs. Furthermore, the cells efficiently sequestered the substrates of Abcc1 and Abcb1, fluo-4 and doxorubicin, in subcellular compartments. In line with this, Abcb1 was localized mainly at intracellular vesicular structures. After 16 h of incubation, wild-type MEFs had small apoptotic nuclei containing doxorubicin, whereas the nuclei of Sgpl1(-/-)-MEFs appeared unchanged and free of doxorubicin. A combined treatment with the inhibitors of Abcb1 and Abcc1, zosuquidar and MK571, respectively, reversed the compartmentalization of doxorubicin and rendered the cells sensitive to doxorubicin-induced apoptosis. It is concluded that upregulation of multidrug resistance transporters contributes to the chemoresistance of S1P lyase-deficient MEFs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aldeído Liases/deficiência , Resistencia a Medicamentos Antineoplásicos , Fibroblastos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Compostos de Anilina/farmacologia , Animais , Doxorrubicina/farmacologia , Fibroblastos/citologia , Fibroblastos/enzimologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Transporte Proteico/efeitos dos fármacos , Xantenos/farmacologia
17.
Neuropharmacology ; 85: 314-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24863045

RESUMO

The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.


Assuntos
Quimiotaxia/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Imunossupressores/farmacologia , Oxazóis/farmacologia , Animais , Células CHO , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cricetulus , Encefalomielite Autoimune Experimental/fisiopatologia , Células Endoteliais/metabolismo , Feminino , Cloridrato de Fingolimode , Humanos , Imunossupressores/química , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Oxazóis/química , Propilenoglicóis/química , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia , Células U937
18.
Biochim Biophys Acta ; 1841(1): 11-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24064301

RESUMO

Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1ß (IL-1ß). Treatment of rat and human mesangial cells with S1P led to concentration-dependent enhanced expression of COX-2. Pharmacological and molecular biology approaches revealed that the S1P-dependent increase of COX-2 mRNA and protein expression was mediated via activation of S1P receptor 2 (S1P2). Further, inhibition of Gi and p42/p44 MAPK signaling, both downstream of S1P2, abolished the S1P-induced COX-2 expression. In addition, S1P/S1P2-dependent upregulation of COX-2 led to significantly elevated PGE2 levels, which were further potentiated in the presence of Ang II and IL-1ß. A functional consequence downstream of S1P/S1P2 signaling is mesangial cell migration that is stimulated by S1P. Interestingly, inhibition of COX-2 by celecoxib and SC-236 completely abolished the migratory response. Overall, our results demonstrate that extracellular S1P induces COX-2 expression via activation of S1P2 and subsequent Gi and p42/p44 MAPK-dependent signaling in renal mesangial cells leading to enhanced PGE2 formation and cell migration that essentially requires COX-2. Thus, targeting S1P/S1P2 signaling pathways might be a novel strategy to treat renal inflammatory diseases.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Dinoprostona/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Lisofosfolipídeos/metabolismo , Células Mesangiais/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Angiotensina II/farmacologia , Animais , Celecoxib , Células Cultivadas , Inibidores de Ciclo-Oxigenase/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , Lisofosfolipídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Células Mesangiais/citologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Esfingosina/metabolismo , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Vasoconstritores/farmacologia
19.
Biochim Biophys Acta ; 1831(11): 1634-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23906789

RESUMO

We previously identified peroxisome proliferator-activated receptor gamma (PPARγ) agonists (thiazolidinediones, TZDs) as modulators of the sphingolipid metabolism in renal mesangial cells. TZDs upregulated sphingosine kinase 1 (SK-1) and increased the formation of intracellular sphingosine 1-phosphate (S1P), which in turn reduced the expression of pro-fibrotic connective tissue growth factor. Since S1P also acts as extracellular ligand at specific S1P receptors (S1PR, S1P1-5), we investigated here the effect of TZDs on S1PR expression in mesangial cells and evaluated the functional consequences by measuring S1P-induced increases in intracellular free Ca(2+) concentration ([Ca(2+)]i). Treatment with two different TZDs, troglitazone and rosiglitazone, enhanced S1P1 mRNA and protein expression in rat mesangial cells, whereas S1P2-5 expression levels were not altered. Upregulation of S1P1 mRNA upon TZD treatment was also detected in human mesangial cells and mouse glomeruli. PPARγ antagonism and promoter studies revealed that the TZD-dependent S1P1 mRNA induction involved a functional PPAR response element in the S1P1 promoter. Pharmacological approaches disclosed that S1P-induced [Ca(2+)]i increases in rat mesangial cells were predominantly mediated by S1P2 and S1P3. Interestingly, the transcriptional upregulation of S1P1 by TZDs resulted in a reduction of S1P-induced [Ca(2+)]i increases, which was reversed by the S1P1/3 antagonist VPC-23019, the protein kinase C (PKC) inhibitor PKC-412, and by S1P1 siRNA. These data suggest that PPARγ-dependent upregulation of S1P1 leads to an inhibition of S1P-induced Ca(2+) signaling in a PKC-dependent manner. Overall, these results reveal that TZDs not only modulate intracellular S1P levels but also regulate S1PR signaling by increasing S1P1 expression in mesangial cells.


Assuntos
Cálcio/metabolismo , Lisofosfolipídeos/farmacologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , PPAR gama/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Tiazolidinedionas/farmacologia , Animais , Western Blotting , Células Cultivadas , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , PPAR gama/agonistas , Ratos , Ratos Sprague-Dawley , Receptores de Lisoesfingolipídeo/genética , Esfingosina/farmacologia
20.
Biochem J ; 447(3): 457-64, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22908849

RESUMO

Embryonic fibroblasts from S1P (sphingosine-1-phosphate) lyase-deficient mice [Sgpl1-/- MEFs (mouse embryonic fibroblasts)] are characterized by intracellular accumulation of S1P, elevated cytosolic [Ca2+]i and enhanced Ca2+ storage. Since S1P, produced by sphingosine kinase 2 in the nucleus of MCF-7 cells, inhibited HDACs (histone deacetylases) [Hait, Allegood, Maceyka, Strub, Harikumar, Singh, Luo, Marmorstein, Kordula, Milstein et al. (2009) Science 325, 1254-1257], in the present study we analysed whether S1P accumulated in the nuclei of S1P lyase-deficient MEFs and caused HDAC inhibition. Interestingly, nuclear concentrations of S1P were disproportionally elevated in Sgpl1-/- MEFs. HDAC activity was reduced, acetylation of histone 3-Lys9 was increased and the HDAC-regulated gene p21 cyclin-dependent kinase inhibitor was up-regulated in these cells. Furthermore, the expression of HDAC1 and HDAC3 was reduced in Sgpl1-/- MEFs. In wild-type MEFs, acetylation of histone 3-Lys9 was increased by the S1P lyase inhibitor 4-deoxypyridoxine. The non-specific HDAC inhibitor trichostatin A elevated basal [Ca2+]i and enhanced Ca2+ storage, whereas the HDAC1/2/3 inhibitor MGCD0103 elevated basal [Ca2+]i without influence on Ca2+ storage in wild-type MEFs. Overexpression of HDAC1 or HDAC2 reduced the elevated basal [Ca2+]i in Sgpl1-/- MEFs. Taken together, S1P lyase-deficiency was associated with elevated nuclear S1P levels, reduced HDAC activity and down-regulation of HDAC isoenzymes. The decreased HDAC activity in turn contributed to the dysregulation of Ca2+ homoeostasis, particularly to the elevated basal [Ca2+]i, in Sgpl1-/- MEFs.


Assuntos
Aldeído Liases/genética , Cálcio/metabolismo , Fibroblastos/metabolismo , Histonas/metabolismo , Acetilação , Animais , Núcleo Celular/metabolismo , Histona Desacetilases/metabolismo , Homeostase , Isoenzimas/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Esfingosina/análogos & derivados , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA