Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Histopathology ; 82(5): 722-730, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36583256

RESUMO

BACKGROUND: Hepatocellular adenoma (HCA) is a rare liver tumour, which can have atypical morphological features such as cytological atypia, pseudoglandular architecture, and altered reticulin framework. Little is known about the genetic and epigenetic alterations of such HCAs and whether they show the alterations classically found in hepatocellular carcinoma (HCC) or in HCA without atypical morphology. METHODS: We analysed five HCAs with atypical morphological features and one HCA with transition to HCC. Every tumour was subtyped by immunohistochemistry, sequenced by a targeted NGS panel, and analysed on a DNA methylation microarray. RESULTS: Subtyping of the five HCAs with atypical features revealed two ß-catenin mutated HCA (b-HCA), two ß-catenin mutated inflammatory HCA (b-IHCA), and one sonic hedgehog activated HCA (shHCA). None of them showed mutations typically found in HCC, such as, e.g. TERT or TP53 mutations. The epigenomic pattern of HCAs with atypical morphological features clustered with reference data for HCAs without atypical morphological features but not with HCC. Similarly, phyloepigenetic trees using the DNA methylation data reproducibly showed that HCAs with morphological atypia are much more similar to nonmalignant samples than to malignant samples. Finally, atypical HCAs showed no relevant copy number variations (CNV). CONCLUSION: In our series, mutational, DNA methylation, as well as CNV analyses, supported a relationship of atypical HCAs with nonatypical HCAs rather than with HCC. Therefore, in cases with difficult differential diagnosis between HCC and HCA, it might be advisable to perform targeted sequencing and/or combined methylation/copy number profiling.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Adenoma de Células Hepáticas/patologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , beta Catenina/genética , Variações do Número de Cópias de DNA , Proteínas Hedgehog , Epigênese Genética
2.
Hepatol Commun ; 6(6): 1467-1481, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35132819

RESUMO

Chronic liver inflammation causes continuous liver damage with progressive liver fibrosis and cirrhosis, which may eventually lead to hepatocellular carcinoma (HCC). Whereas the 10-year incidence for HCC in patients with cirrhosis is approximately 20%, many of these patients remain tumor free for their entire lives. Clarifying the mechanisms that define the various outcomes of chronic liver inflammation is a key aspect in HCC research. In addition to a wide variety of contributing factors, microRNAs (miRNAs) have also been shown to be engaged in promoting liver cancer. Therefore, we wanted to characterize miRNAs that are involved in the development of HCC, and we designed a longitudinal study with formalin-fixed and paraffin-embedded liver biopsy samples from several pathology institutes from Switzerland. We examined the miRNA expression by nCounterNanostring technology in matched nontumoral liver tissue from patients developing HCC (n = 23) before and after HCC formation in the same patient. Patients with cirrhosis (n = 26) remaining tumor free within a similar time frame served as a control cohort. Comparison of the two cohorts revealed that liver tissue from patients developing HCC displayed a down-regulation of miR-579-3p as an early step in HCC development, which was further confirmed in a validation cohort. Correlation with messenger RNA expression profiles further revealed that miR-579-3p directly attenuated phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) expression and consequently protein kinase B (AKT) and phosphorylated AKT. In vitro experiments and the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology confirmed that miR-579-3p controlled cell proliferation and cell migration of liver cancer cell lines. Conclusion: Liver tissues from patients developing HCC revealed changes in miRNA expression. miR-579-3p was identified as a novel tumor suppressor regulating phosphoinositide 3-kinase-AKT signaling at the early stages of HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Estudos Longitudinais , MicroRNAs/genética , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
3.
Oncogene ; 39(24): 4728-4740, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32404986

RESUMO

An epithelial to mesenchymal transition (EMT) is an embryonic dedifferentiation program which is aberrantly activated in cancer cells to acquire cellular plasticity. This plasticity increases the ability of breast cancer cells to invade into surrounding tissue, to seed metastasis at distant sites and to resist to chemotherapy. In this study, we have observed a higher expression of interferon-related factors in basal-like and claudin-low subtypes of breast cancer in patients, known to be associated with EMT. Notably, Irf1 exerts essential functions during the EMT process, yet it is also required for the maintenance of an epithelial differentiation status of mammary gland epithelial cells: RNAi-mediated ablation of Irf1 in mammary epithelial cells results in the expression of mesenchymal factors and Smad transcriptional activity. Conversely, ablation of Irf1 during TGFß-induced EMT prevents a mesenchymal transition and stabilizes the expression of E-cadherin. In the basal-like murine breast cancer cell line 4T1, RNAi-mediated ablation of Irf1 reduces colony formation and cell migration in vitro and shedding of circulating tumor cells and metastasis formation in vivo. This context-dependent dual role of Irf1 in the regulation of epithelial-mesenchymal plasticity provides important new insights into the functional contribution and therapeutic potential of interferon-regulated factors in breast cancer.


Assuntos
Transição Epitelial-Mesenquimal , Fator Regulador 1 de Interferon/biossíntese , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Proteínas de Neoplasias/biossíntese , Animais , Linhagem Celular Tumoral , Feminino , Fator Regulador 1 de Interferon/genética , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Proteínas de Neoplasias/genética
4.
Pathobiology ; 87(3): 171-178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32079019

RESUMO

INTRODUCTION: Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm of the gastrointestinal tract. It has distinct molecular features and primarily affects the KIT and PDGFRA genes. OBJECTIVE: We wanted to assess the molecular profile of 68 GIST patients who were sequenced consecutively between 2014 and 2019 at our institute of pathology. METHODS: Our cohort comprised 60 primary and 8 metastatic GIST patients; 43 and 57% of the cases, respectively, were analyzed by Sanger sequencing or next-generation sequencing (NGS). RESULTS: Of the 60 primary GIST patients, 47 (78%) showed a KIT mutation; 2 cases showed a double KIT mutation, and 1 of these was a therapy-naive GIST. Nine (15%) patients harbored a PDGFRA mutation, 2 (3%) had a BRAF mutation, 1 (2%) had a PIK3CA mutation, and 1 (2%) did not show any mutation. One BRAF and the PIK3CA mutation have not been described in GIST before. All metastatic GIST harbored exclusively KIT mutations. CONCLUSION: A retrospective analysis of GIST sequenced at our institute revealed incidences of KIT and PDGFRA mutations comparable to those in other cohorts from Europe. Interestingly, we found 2 previously undescribed mutations in the BRAF and PIK3CA genes as well as 1 treatment-naive case with a double KIT mutation in exon 11.


Assuntos
Análise Mutacional de DNA , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Mutação , Idoso , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Inclusão em Parafina , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Estudos Retrospectivos , Suíça
5.
Bioinformatics ; 35(14): i577-i585, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510686

RESUMO

MOTIVATION: In order to infer a cell signalling network, we generally need interventional data from perturbation experiments. If the perturbation experiments are time-resolved, then signal progression through the network can be inferred. However, such designs are infeasible for large signalling networks, where it is more common to have steady-state perturbation data on the one hand, and a non-interventional time series on the other. Such was the design in a recent experiment investigating the coordination of epithelial-mesenchymal transition (EMT) in murine mammary gland cells. We aimed to infer the underlying signalling network of transcription factors and microRNAs coordinating EMT, as well as the signal progression during EMT. RESULTS: In the context of nested effects models, we developed a method for integrating perturbation data with a non-interventional time series. We applied the model to RNA sequencing data obtained from an EMT experiment. Part of the network inferred from RNA interference was validated experimentally using luciferase reporter assays. Our model extension is formulated as an integer linear programme, which can be solved efficiently using heuristic algorithms. This extension allowed us to infer the signal progression through the network during an EMT time course, and thereby assess when each regulator is necessary for EMT to advance. AVAILABILITY AND IMPLEMENTATION: R package at https://github.com/cbg-ethz/timeseriesNEM. The RNA sequencing data and microscopy images can be explored through a Shiny app at https://emt.bsse.ethz.ch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Animais , Camundongos , Interferência de RNA , Análise de Sequência de RNA , Transdução de Sinais , Fatores de Transcrição
6.
Dev Cell ; 48(4): 539-553.e6, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30713070

RESUMO

Epithelial-mesenchymal transition (EMT) enables cells to gain migratory and invasive features underlined by major transcriptional and epigenetic reprogramming. However, most studies have focused on the endpoints of the EMT process, and the epistatic hierarchy of the transcriptional networks underlying EMT has remained elusive. We have used a siRNA-based, functional high-content microscopy screen to identify 46 (co)transcription factors ((co)TFs) and 13 miRNAs critically required for EMT in normal murine mammary gland (NMuMG) cells. We compared dynamic gene expression during EMT kinetics and used functional perturbation of critical (co)TFs and miRNAs to identify groups and networks of EMT genes. Computational analysis as well as functional validation experiments revealed interaction networks between TFs and miRNAs and delineated the hierarchical and functional interactions of multiple EMT regulatory networks in NMuMG cells.


Assuntos
Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Transição Epitelial-Mesenquimal/fisiologia , Redes Reguladoras de Genes/genética , Humanos , Camundongos
7.
Breast Cancer Res ; 20(1): 118, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285803

RESUMO

BACKGROUND: The most life-threatening step during malignant tumor progression is reached when cancer cells leave the primary tumor mass and seed metastasis in distant organs. To infiltrate the surrounding tissue and disseminate throughout the body, single motile tumor cells leave the tumor mass by breaking down cell-cell contacts in a process called epithelial to mesenchymal transition (EMT). An EMT is a complex molecular and cellular program enabling epithelial cells to abandon their differentiated phenotype, including cell-cell adhesion and cell polarity, and to acquire mesenchymal features and invasive properties. METHODS: We employed gene expression profiling and functional experiments to study transcriptional control of transforming growth factor (TGF)ß-induced EMT in normal murine mammary gland epithelial (NMuMG) cells. RESULTS: We identified that expression of the transcription factor forkhead box protein F2 (Foxf2) is upregulated during the EMT process. Although it is not required to gain mesenchymal markers, Foxf2 is essential for the disruption of cell junctions and the downregulation of epithelial markers in NMuMG cells treated with TGFß. Foxf2 is critical for the downregulation of E-cadherin by promoting the expression of the transcriptional repressors of E-cadherin, Zeb1 and Zeb2, while repressing expression of the epithelial maintenance factor Id2 and miRNA 200 family members. Moreover, Foxf2 is required for TGFß-mediated apoptosis during EMT by the transcriptional activation of the proapoptotic BH3-only protein Noxa and by the negative regulation of epidermal growth factor receptor (EGFR)-mediated survival signaling through direct repression of its ligands betacellulin and amphiregulin. The dual function of Foxf2 during EMT is underscored by the finding that high Foxf2 expression correlates with good prognosis in patients with early noninvasive stages of breast cancer, but with poor prognosis in advanced breast cancer. CONCLUSIONS: Our data identify the transcription factor Foxf2 as one of the important regulators of EMT, displaying a dual function in promoting tumor cell apoptosis as well as tumor cell migration.


Assuntos
Apoptose/genética , Movimento Celular/genética , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Junções Intercelulares/metabolismo , Células MCF-7 , Camundongos , Fator de Crescimento Transformador beta/farmacologia
8.
Oncogenesis ; 7(9): 73, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237500

RESUMO

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that regulates a plethora of downstream signaling pathways essential for cell migration, proliferation and death, processes that are exploited by cancer cells during malignant progression. These well-established tumorigenic activities, together with its high expression and activity in different cancer types, highlight FAK as an attractive target for cancer therapy. We have assessed and characterized the therapeutic potential and the biological effects of BI 853520, a novel small chemical inhibitor of FAK, in several preclinical mouse models of breast cancer. Treatment with BI 853520 elicits a significant reduction in primary tumor growth caused by an anti-proliferative activity by BI 853520. In contrast, BI 853520 exerts effects with varying degrees of robustness on the different stages of the metastatic cascade. Together, the data demonstrate that the repression of FAK activity by the specific FAK inhibitor BI 853520 offers a promising anti-proliferative approach for cancer therapy.

9.
Oncogene ; 37(31): 4197-4213, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29713055

RESUMO

An epithelial to mesenchymal transition (EMT) has been correlated to malignant tumor progression and metastasis by promoting cancer cell migration and invasion and chemoresistance. Hence, finding druggable EMT effectors is critical to efficiently interfere with metastasis formation and to overcome therapy resistance. We have employed a high-content microscopy screen in combination with a kinome and phosphatome-wide siRNA library to identify signaling pathways underlying an EMT of murine mammary epithelial cells and breast cancer cells. This screen identified the MEK5-ERK5 axis as a critical player in TGFß-mediated EMT. Suppression of MEK5-ERK5 signaling completely prevented the morphological and molecular changes occurring during a TGFß-induced EMT and, conversely, forced highly metastatic breast cancer cells into a differentiated epithelial state. Inhibition of MEK5-ERK5 signaling also repressed breast cancer cell migration and invasion and substantially reduced lung metastasis without affecting primary tumor growth. The results suggest that the MEK5-ERK5 signaling axis via activation of MEF2B and other transcription factors plays an important role in the induction and maintenance of breast cancer cell migration and invasion and thus represents an exploitable target for the pharmacological inhibition of cancer cell metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/fisiologia , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Metástase Neoplásica/patologia , RNA Interferente Pequeno/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
10.
Nat Commun ; 8(1): 1168, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079737

RESUMO

Epithelial tumour cells can gain invasive and metastatic capabilities by undergoing an epithelial-mesenchymal transition. Transcriptional regulators and post-transcriptional effectors like microRNAs orchestrate this process of high cellular plasticity and its malignant consequences. Here, using microRNA sequencing in a time-resolved manner and functional validation, we have identified microRNAs that are critical for the regulation of an epithelial-mesenchymal transition and of mesenchymal tumour cell migration. We report that miR-1199-5p is downregulated in its expression during an epithelial-mesenchymal transition, while its forced expression prevents an epithelial-mesenchymal transition, tumour cell migration and invasion in vitro, and lung metastasis in vivo. Mechanistically, miR-1199-5p acts in a reciprocal double-negative feedback loop with the epithelial-mesenchymal transition transcription factor Zeb1. This function resembles the activities of miR-200 family members, guardians of an epithelial cell phenotype. However, miR-1199-5p and miR-200 family members share only six target genes, indicating that, besides regulating Zeb1 expression, they exert distinct functions during an epithelial-mesenchymal transition.


Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/metabolismo , MicroRNAs/metabolismo , Metástase Neoplásica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Mamárias Animais/genética , Camundongos , MicroRNAs/genética , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
11.
Oncotarget ; 7(18): 25983-6002, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27036020

RESUMO

An epithelial to mesenchymal transition (EMT) enables epithelial tumor cells to break out of the primary tumor mass and to metastasize. Understanding the molecular mechanisms driving EMT in more detail will provide important tools to interfere with the metastatic process. To identify pharmacological modulators and druggable targets of EMT, we have established a novel multi-parameter, high-content, microscopy-based assay and screened chemical compounds with activities against known targets. Out of 3423 compounds, we have identified 19 drugs that block transforming growth factor beta (TGFß)-induced EMT in normal murine mammary gland epithelial cells (NMuMG). The active compounds include inhibitors against TGFß receptors (TGFBR), Rho-associated protein kinases (ROCK), myosin II, SRC kinase and uridine analogues. Among the EMT-repressing compounds, we identified a group of inhibitors targeting multiple receptor tyrosine kinases, and biochemical profiling of these multi-kinase inhibitors reveals TGFBR as a thus far unknown target of their inhibitory spectrum. These findings demonstrate the feasibility of a multi-parameter, high-content microscopy screen to identify modulators and druggable targets of EMT. Moreover, the newly discovered "off-target" effects of several receptor tyrosine kinase inhibitors have important consequences for in vitro and in vivo studies and might beneficially contribute to the therapeutic effects observed in vivo.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Neoplasias Mamárias Animais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Receptores Proteína Tirosina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas
12.
Elife ; 5: e13841, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27008177

RESUMO

Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Culina/metabolismo , Endocitose , Endossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transporte Biológico , Linhagem Celular , Humanos , Vírus da Influenza A/fisiologia , Internalização do Vírus
13.
Sci Rep ; 5: 11759, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26152517

RESUMO

RalA and RalB proteins are key mediators of oncogenic Ras signaling in human oncogenesis. Herein we investigated the mechanistic contribution of Ral proteins to invasion of lung cancer A549 cells after induction of epithelial-mesenchymal transition (EMT) with TGFß. We show that TGFß-induced EMT promotes dissemination of A549 cells in a 2/3D assay, independently of proteolysis, by activating the Rho/ROCK pathway which generates actomyosin-dependent contractility forces that actively remodel the extracellular matrix, as assessed by Traction Force microscopy. RalB, but not RalA, is required for matrix deformation and cell dissemination acting via the RhoGEF GEF-H1, which associates with the Exocyst complex, a major Ral effector. Indeed, uncoupling of the Exocyst subunit Sec5 from GEF-H1 impairs RhoA activation, generation of traction forces and cell dissemination. These results provide a novel molecular mechanism underlying the control of cell invasion by RalB via a cross-talk with the Rho pathway.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Proteínas ral de Ligação ao GTP/metabolismo , Amidas/farmacologia , Linhagem Celular Tumoral , Humanos , Microscopia de Força Atômica , Piridinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/antagonistas & inibidores , Proteínas ral de Ligação ao GTP/genética , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
14.
Mol Oncol ; 8(2): 401-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24423492

RESUMO

An epithelial-mesenchymal transition (EMT) is a critical process during embryonic development and the progression of epithelial tumors to metastatic cancers. Gene expression profiling has uncovered the transcription factor LIM homeobox gene 2 (Lhx2) with up-regulated expression during TGFß-induced EMT in normal and cancerous breast epithelial cells. Loss and gain of function experiments in transgenic mouse models of breast cancer and of insulinoma in vivo and in breast cancer cells in vitro indicate that Lhx2 plays a critical role in primary tumor growth and metastasis. Notably, the transgenic expression of Lhx2 during breast carcinogenesis promotes vessel maturation, primary tumor growth, tumor cell intravasation and metastasis by directly inducing the expression of platelet-derived growth factor (PDGF)-B in tumor cells and by indirectly increasing the expression of PDGF receptor-ß (PDGFRß) on tumor cells and pericytes. Pharmacological inhibition of PDGF-B/PDGFRß signaling reduces vessel functionality and tumor growth and Lhx2-induced cell migration and cell invasion. The data indicate a dual role of Lhx2 during EMT and tumor progression: by inducing the expression of PDGF-B, Lhx2 provokes an autocrine PDGF-B/PDGFRß loop required for cell migration, invasion and metastatic dissemination and paracrine PDGF-B/PDGFRß signaling to support blood vessel functionality and, thus, primary tumor growth.


Assuntos
Comunicação Autócrina , Neoplasias da Mama/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Comunicação Parácrina , Proteínas Proto-Oncogênicas c-sis/biossíntese , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Proteínas com Homeodomínio LIM/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-sis/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Transcrição/genética
15.
Cancer Res ; 74(5): 1566-75, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413534

RESUMO

An epithelial-mesenchymal transition (EMT) underlies malignant tumor progression and metastatic spread by enabling cancer cells to depart from the primary tumor, invade surrounding tissue, and disseminate to distant organs. EMT also enriches for cancer stem cells (CSC) and increases the capacity of cancer cells to initiate and propagate tumors upon transplantation into immune-deficient mice, a major hallmark of CSCs. However, the molecular mechanisms promoting the tumorigenicity of cancer cells undergoing an EMT and of CSCs have remained widely elusive. We here report that EMT confers efficient tumorigenicity to murine breast cancer cells by the upregulated expression of the proangiogenic factor VEGF-A and by increased tumor angiogenesis. On the basis of these data, we propose a novel interpretation of the features of CSCs with EMT-induced, VEGF-A-mediated angiogenesis as the connecting mechanism between cancer cell stemness and tumor initiation.


Assuntos
Carcinogênese/patologia , Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
16.
Cancer Cell ; 23(6): 768-83, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23764001

RESUMO

Gene expression profiling has uncovered the transcription factor Sox4 with upregulated activity during TGF-ß-induced epithelial-mesenchymal transition (EMT) in normal and cancerous breast epithelial cells. Sox4 is indispensable for EMT and cell survival in vitro and for primary tumor growth and metastasis in vivo. Among several EMT-relevant genes, Sox4 directly regulates the expression of Ezh2, encoding the Polycomb group histone methyltransferase that trimethylates histone 3 lysine 27 (H3K27me3) for gene repression. Ablation of Ezh2 expression prevents EMT, whereas forced expression of Ezh2 restores EMT in Sox4-deficient cells. Ezh2-mediated H3K27me3 marks associate with key EMT genes, representing an epigenetic EMT signature that predicts patient survival. Our results identify Sox4 as a master regulator of EMT by governing the expression of the epigenetic modifier Ezh2.


Assuntos
Epigênese Genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Complexo Repressor Polycomb 2/genética , Fatores de Transcrição SOXC/fisiologia , Animais , Linhagem Celular , Movimento Celular/genética , Sobrevivência Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Histonas/metabolismo , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Metilação , Camundongos , Metástase Neoplásica/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/fisiologia , Regiões Promotoras Genéticas , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Transcrição Gênica
17.
PLoS One ; 8(2): e57329, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451207

RESUMO

We have identified the zinc-finger transcription factor Kruppel-like factor 4 (Klf4) among the transcription factors that are significantly downregulated in their expression during epithelial-mesenchymal transition (EMT) in mammary epithelial cells and in breast cancer cells. Loss and gain of function experiments demonstrate that the down-regulation of Klf4 expression is required for the induction of EMT in vitro and for metastasis in vivo. In addition, reduced Klf4 expression correlates with shorter disease-free survival of subsets of breast cancer patients. Yet, reduced expression of Klf4 also induces apoptosis in cells undergoing TGFß-induced EMT. Chromatin immunoprecipitation/deep-sequencing in combination with gene expression profiling reveals direct Klf4 target genes, including E-cadherin (Cdh1), N-cadherin (Cdh2), vimentin (Vim), ß-catenin (Ctnnb1), VEGF-A (Vegfa), endothelin-1 (Edn1) and Jnk1 (Mapk8). Thereby, Klf4 acts as a transcriptional activator of epithelial genes and as a repressor of mesenchymal genes. Specifically, increased expression of Jnk1 (Mapk8) upon down-regulation of its transcriptional repressor Klf4 is required for EMT cell migration and for the induction of apoptosis. The data demonstrate a central role of Klf4 in the maintenance of epithelial cell differentiation and the prevention of EMT and metastasis.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/fisiologia , Transativadores/fisiologia , Animais , Diferenciação Celular , Fator 4 Semelhante a Kruppel , Camundongos , Neoplasias Experimentais/patologia
18.
PLoS One ; 7(11): e48651, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144919

RESUMO

INTRODUCTION: Increasing evidence supports a role of an epithelial to mesenchymal transition (EMT) process in endowing subsets of tumor cells with properties driving malignant tumor progression and resistance to cancer therapy. To advance our understanding of the underlying mechanisms, we sought to generate a transplantable cellular model system that allows defined experimental manipulation and analysis of EMT in vitro and at the same time recapitulates oncogenic EMT in vivo. METHODOLOGY/RESULTS: We have established a stable murine breast cancer cell line (Py2T) from a breast tumor of an MMTV-PyMT transgenic mouse. Py2T cells display a metastable epithelial phenotype characterized by concomitant expression of luminal and basal cytokeratins and sheet migration. Exposure of Py2T cells to transforming growth factor ß (TGFß) in vitro induces reversible EMT accompanied by downregulation of E-cadherin and upregulation of mesenchymal markers, including EMT transcription factors, and a gain in single cell motility and invasiveness. Py2T cells give rise to tumors after orthotopic injection into syngeneic FVB/N mice. Notably, transplantation of epithelial Py2T cells results in the formation of invasive primary tumors with low to absent E-cadherin expression, indicating that the cells undergo EMT-like changes in vivo. This process appears to at least in part depend on TGFß signaling, since tumors formed by Py2T cells expressing a dominant-negative version of TGFß receptor widely maintain their epithelial differentiation status. CONCLUSIONS/SIGNIFICANCE: Together, the data demonstrate that the Py2T cell line represents a versatile model system to study the EMT process in vitro and in vivo. The observation that Py2T cells give rise to tumors and collectively undergo EMT-like changes in vivo highlights the suitability of the Py2T model system as a tool to study tumor-related EMT. In particular, Py2T cells may serve to corroborate recent findings relating EMT to cancer cell stemness, to therapy resistance and to tumor recurrence.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Mamárias Animais/patologia , Fator de Crescimento Transformador beta/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Humanos , Cinética , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Transplante de Neoplasias , Fenótipo , Transdução de Sinais/efeitos dos fármacos
19.
Proc Natl Acad Sci U S A ; 109(3): 823-8, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22219362

RESUMO

Cullin-3 (Cul3) functions as a scaffolding protein in the Bric-a-brac, Tramtrack, Broad-complex (BTB)-Cul3-Rbx1 ubiquitin E3 ligase complex. Here, we report a previously undescribed role for Cul3 complexes in late endosome (LE) maturation. RNAi-mediated depletion of Cul3 results in a trafficking defect of two cargoes of the endolysosomal pathway, influenza A virus (IAV) and epidermal growth factor receptor (EGFR). IAV is able to reach an acidic endosomal compartment, coinciding with LE/lysosome (LY) markers. However, it remains trapped or the capsid is unable to uncoat after penetration into the cytosol. Similarly, activation and subsequent ubiquitination of EGFR appear normal, whereas downstream EGFR degradation is delayed and its ligand EGF accumulates in LE/LYs. Indeed, Cul3-depleted cells display severe morphological defects in LEs that could account for these trafficking defects; they accumulate acidic LE/LYs, and some cells become highly vacuolated, with enlarged Rab7-positive endosomes. Together, these results suggest a crucial role of Cul3 in regulating late steps in the endolysosomal trafficking pathway.


Assuntos
Proteínas Culina/metabolismo , Endossomos/metabolismo , Compartimento Celular , Linhagem Celular Tumoral , Endossomos/virologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Vírus da Influenza A/fisiologia , Lisossomos/metabolismo , Proteólise , RNA Interferente Pequeno/metabolismo , Coloração e Rotulagem , Ubiquitinação , Internalização do Vírus
20.
Proc Natl Acad Sci U S A ; 106(30): 12365-70, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19617556

RESUMO

Cullin (Cul)-based E3 ubiquitin ligases are activated through the attachment of Nedd8 to the Cul protein. In yeast, Dcn1 (defective in Cul neddylation 1 protein) functions as a scaffold-like Nedd8 E3-ligase by interacting with its Cul substrates and the Nedd8 E2 Ubc12. Human cells express 5 Dcn1-like (DCNL) proteins each containing a C-terminal potentiating neddylation domain but distinct amino-terminal extensions. Although the UBA-containing DCNL1 and DCNL2 are likely functional homologues of yeast Dcn1, DCNL3 also interacts with human Culs and is able to complement the neddylation defect of yeast dcn1Delta cells. DCNL3 down-regulation by RNAi decreases Cul neddylation, and overexpression of a Cul3 mutant deficient in DCNL3 binding interferes with Cul3 function in vivo. Interestingly, DCNL3 accumulates at the plasma membrane through a conserved, lipid-modified motif at the N terminus. Membrane-bound DCNL3 is able to recruit Cul3 to membranes and is functionally important for Cul3 neddylation in vivo. We conclude that DCNL proteins function as nonredundant Cul Nedd8-E3 ligases. Moreover, the diversification of the N termini in mammalian Dcn1 homologues may contribute to substrate specificity by regulating their subcellular localization.


Assuntos
Membrana Celular/metabolismo , Proteínas Culina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sítios de Ligação , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas Culina/genética , Imunofluorescência , Teste de Complementação Genética , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Mutação , Proteína NEDD8 , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas de Saccharomyces cerevisiae/genética , Transfecção , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA