Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biol Chem ; 405(3): 161-165, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37552610

RESUMO

The activity of neuronal Kv7.2/Kv7.3 channels is critically dependent on PIP2 and finely modulated by cholesterol. Here, we report the crosstalk between cholesterol and PIP2 in the regulation of Kv7.2/Kv7.3 channels. Our results show that currents passing through Kv7.2/Kv7.3 channels in cholesterol-depleted cells, by acute application of methyl-ß-cyclodextrin (MßCD), were less sensitive to PIP2 dephosphorylation strategies than those of control cells, suggesting that cholesterol depletion enhances the Kv7.2/Kv7.3-PIP2 interaction. In contrast, the sensitivity of Kv7.2/Kv7.3 channels to acute membrane cholesterol depletion by MßCD was not altered in mutant channels with different apparent affinities for PIP2.


Assuntos
Colesterol
2.
Sci Rep ; 12(1): 9186, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655070

RESUMO

P/Q-type Ca2+ currents mediated by CaV2.1 channels are essential for active neurotransmitter release at neuromuscular junctions and many central synapses. Mutations in CACNA1A, the gene encoding the principal CaV2.1 α1A subunit, cause a broad spectrum of neurological disorders. Typically, gain-of-function (GOF) mutations are associated with migraine and epilepsy while loss-of-function (LOF) mutations are causative for episodic and congenital ataxias. However, a cluster of severe CaV2.1 channelopathies have overlapping presentations which suggests that channel dysfunction in these disorders cannot always be defined bimodally as GOF or LOF. In particular, the R1667P mutation causes focal seizures, generalized hypotonia, dysarthria, congenital ataxia and, in one case, cerebral edema leading ultimately to death. Here, we demonstrate that the R1667P mutation causes both channel GOF (hyperpolarizing voltage-dependence of activation, slowed deactivation) and LOF (slowed activation kinetics) when expressed heterologously in tsA-201 cells. We also observed a substantial reduction in Ca2+ current density in this heterologous system. These changes in channel gating and availability/expression manifested in diminished Ca2+ flux during action potential-like stimuli. However, the integrated Ca2+ fluxes were no different when normalized to tail current amplitude measured upon repolarization from the reversal potential. In summary, our findings indicate a complex functional effect of R1667P and support the idea that pathological missense mutations in CaV2.1 may not represent exclusively GOF or LOF.


Assuntos
Canalopatias , Transtornos do Neurodesenvolvimento , Ataxia , Canais de Cálcio/genética , Canais de Cálcio Tipo N , Canalopatias/genética , Humanos , Hipotonia Muscular
3.
Biophys J ; 120(11): 2287-2295, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864789

RESUMO

Fluorescence resonance energy transfer (FRET) is a high-resolution technique that allows the characterization of spatial and temporal properties of biological structures and mechanisms. In this work, we developed an in silico single-molecule FRET methodology to study the dynamics of fluorophores inside lipid rafts. We monitored the fluorescence of a single acceptor molecule in the presence of several donor molecules. By looking at the average fluorescence, we selected events with single acceptor and donor molecules, and we used them to determine the raft size in the range of 5-16 nm. We conclude that our method is robust and insensitive to variations in the diffusion coefficient, donor density, or selected fluorescence threshold.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Simulação por Computador , Microdomínios da Membrana , Nanotecnologia
4.
ACS Chem Neurosci ; 12(4): 651-659, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33507062

RESUMO

Regulation of cellular excitability and oscillatory behavior of resting membrane potential in nerve cells are largely mediated by the low-voltage activated T-type calcium channels. This calcium channel family is constituted by three isoforms, namely, CaV3.1, CaV3.2, and CaV3.3, that are largely distributed in the nervous system and other parts of the body. Dysfunction of T-type calcium channels is associated with a wide range of pathophysiologies including epilepsy, neuropathic pain, cardiac problems, and major depressive disorders. Due to their pharmacological relevance, finding molecular agents able to modulate the channel's function may provide therapeutic means to ameliorate their related disorders. Here we used electrophysiological experiments to show that genistein, a canonical tyrosine kinase inhibitor, reduces the activity of the human CaV3.3 channel in a concentration-dependent manner. The inhibitory effect of genistein is independent of tyrosine kinase modulation and does not affect the voltage-dependent gating of the channel. Subsequently, we used computational methods to identify plausible molecular poses for the interaction of genistein and the CaV3.3 channel. Starting from different molecular poses, we carried out all-atom molecular dynamics (MD) simulations to identify the interacting determinants for the CaV3.3/genistein complex formation. Our extensive (microsecond-length) simulations suggest specific binding interactions that seem to stabilize the protein/inhibitor complex. Furthermore, our results from the unbiased MD simulations are in good agreement with the recently solved cryoelectron microscopy structure of the CaV3.1/Z944 complex in terms of both the location of the ligand binding site and the role of several equivalent amino acid residues. Proposed interacting complex loci were subsequently tested and corroborated by electrophysiological experiments using another naturally occurring isoflavone derivative, daidzein. Thus, by using a combination of in vitro and in silico techniques, we have identified interacting determinants relevant to the CaV3.3/genistein complex formation and propose that genistein directly blocks the function of the human CaV3.3 channel as a result of such interaction. Specifically, we proposed that a combination of polar interactions involving the three hydroxyl groups of genistein and an aromatic interaction with the fused rings are the main binding interactions in the complex formation. Our results pave the way for the rational development of improved and novel low-voltage activated T-type calcium channel inhibitors.


Assuntos
Canais de Cálcio Tipo T , Transtorno Depressivo Maior , Isoflavonas , Microscopia Crioeletrônica , Genisteína/farmacologia , Humanos
5.
Br J Pharmacol ; 177(11): 2456-2465, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32060896

RESUMO

In physiology, homeostasis refers to the condition where a system exhibits an optimum functional level. In contrast, any variation from this optimum is considered as a dysfunctional or pathological state. In this review, we address the proposal that a critical cholesterol level in the plasma membrane is required for the proper functioning of transmembrane proteins. Thus, membrane cholesterol depletion or enrichment produces a loss or gain of direct cholesterol-protein interaction and/or changes in the physical properties of the plasma membrane, which affect the basal or optimum activity of transmembrane proteins. Whether or not this functional switching is a generalized mechanism exhibited for all transmembrane proteins, or if it works just for an exclusive group of them, is an open question and an attractive subject to explore at a basic, pharmacological and clinical level.


Assuntos
Colesterol , Casamento , Membrana Celular , Homeostase
6.
Biochim Biophys Acta Biomembr ; 1860(5): 1242-1251, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29474891

RESUMO

Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-ß-cyclodextrin (MßCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MßCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels.


Assuntos
Colesterol/fisiologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/química , Colesterol/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
7.
J Gen Physiol ; 146(1): 97-108, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26078055

RESUMO

In skeletal muscle, excitation-contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca(2+) channel (Ca(V)1.1) to be communicated to the type 1 ryanodine-sensitive Ca(2+) release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein-protein interactions. Although the molecular mechanism that underlies conformational coupling between Ca(V)1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α(1S) subunit of Ca(V)1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary ß(1a) subunit of Ca(V)1.1 is a conduit for this intermolecular communication. However, a direct role for ß(1a) has been difficult to test because ß(1a) serves two other functions that are prerequisite for conformational coupling between Ca(V)1.1 and RYR1. Specifically, ß(1a) promotes efficient membrane expression of Ca(V)1.1 and facilitates the tetradic ultrastructural arrangement of Ca(V)1.1 channels within plasma membrane-SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established ß subunit-interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca(2+) transients without greatly affecting Ca(V)1.1 targeting, intramembrane gating charge movement, or releasable SR Ca(2+) store content. In contrast, a ß(1a)-binding-deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca(2+) release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of Ca(V)1.1 from RYR1-mediated SR Ca(2+) release via its ability to interact with ß(1a). Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the ß(1a) subunit in skeletal-type EC coupling.


Assuntos
Acoplamento Excitação-Contração/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fibras Musculares Esqueléticas/fisiologia , Ligação Proteica/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiologia
8.
Pflugers Arch ; 467(8): 1699-709, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25204428

RESUMO

Voltage-gated, CaV2.3 calcium channels and neurokinin-1 (NK1) receptors are both present in nuclei of the central nervous system. When transiently coexpressed in human embryonic kidney (HEK) 293 cells, CaV2.3 is primarily inhibited during strong, agonist-dependent activation of NK1 receptors. NK1 receptors localize to plasma membrane rafts, and their modulation by Gq/11 protein-coupled signaling is sensitive to plasma membrane cholesterol. Here, we show that inhibition of CaV2.3 by NK1 receptors is attenuated following methyl-ß-cyclodextrin (MBCD)-mediated depletion of membrane cholesterol. By contrast, inhibition of CaV2.3 was unaffected by intracellular diffusion of caveolin-1 scaffolding peptide or by overexpression of caveolin-1. Interestingly, MΒCD treatment had no effect on the macroscopic biophysical properties of CaV2.3, though it significantly decreased whole-cell membrane capacitance. Our data indicate that (1) cholesterol supports at least one component of the NK1 receptor-linked signaling pathway that inhibits CaV2.3 and (2) caveolin-1 is dispensable within this pathway. Our findings suggest that NK1 receptors reside within non-caveolar membrane rafts and that CaV2.3 resides nearby but outside the rafts. Raft-dependent modulation of CaV2.3 could be important in the physiological and pathophysiological processes in which these channels participate, including neuronal excitability, synaptic plasticity, epilepsy, and chronic pain.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Receptor Cross-Talk , Receptores da Neurocinina-1/metabolismo , Animais , Canais de Cálcio Tipo R/genética , Caveolina 1/genética , Células HEK293 , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Potenciais da Membrana , Coelhos , Ratos , Receptores da Neurocinina-1/genética , Transfecção , beta-Ciclodextrinas/farmacologia
9.
Channels (Austin) ; 8(3): 243-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24476902

RESUMO

Three physiological functions have been described for the skeletal muscle 1,4-dihydropyridine receptor (Ca(V)1.1):(1) voltage-sensor for excitation-contraction (EC) coupling, (2) L-type Ca(2+) channel, and (3) voltage-sensor for slow depolarization-dependent Ca(2+) entry. Members of the RGK (Rad, Rem, Rem2, Gem/Kir) family of monomeric GTP-binding proteins are potent inhibitors of the former two functions of Ca(V)1.1. However, it is not known whether the latter function that has been attributed to Ca(V)1.1 is subject to modulation by RGK proteins. Thus, the purpose of this study was to determine whether Rad, Gem and/or Rem inhibit the slowly developing, persistent Ca(2+) entry that is dependent on the voltage-sensing capability of Ca(V)1.1. As a means to investigate this question, Venus fluorescent protein-fused RGK proteins(V-Rad, V-Rem and V-Gem) were overexpressed in "normal" mouse myotubes. We observed that such overexpression of V-Rad, V-Rem or V-Gem in myotubes caused marked changes in morphology of the cells. As shown previously for YFPRem,both L-type current and EC coupling were also impaired greatly in myotubes expressing either V-Rad or V-Gem. There ductions in L-type current and EC coupling were paralleled by reductions in depolarization-induced Ca(2+) entry. Our observations provide the first evidence of modulation of this enigmatic Ca(2+) entry pathway peculiar to skeletal muscle.


Assuntos
Cálcio/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas ras/metabolismo , Animais , Transporte Biológico , Polaridade Celular , Células Cultivadas , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Fibras Musculares Esqueléticas/citologia , Proteínas ras/genética
10.
Mol Pharmacol ; 77(2): 202-10, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19805509

RESUMO

The voltage-activated T-type calcium channel (Ca(V)3.2) and the G protein-coupled neurokinin 1 (NK1) receptor are expressed in peripheral tissues and in central neurons, in which they participate in diverse physiological processes, including neurogenic inflammation and nociception. In the present report, we demonstrate that recombinant Ca(V)3.2 channels are reversibly inhibited by NK1 receptors when both proteins are transiently coexpressed in human embryonic kidney 293 cells. We found that the voltage-dependent macroscopic properties of Ca(V)3.2 currents were unaffected during NK1 receptor-mediated inhibition. However, inhibition was attenuated in cells coexpressing either the dominant-negative Galpha(q) Q209L/D277N or the regulator of G protein signaling (RGS) proteins 2 (RGS2) and 3T (RGS3T), which are effective antagonists of Galpha(q/11). By contrast, inhibition was unaffected in cells coexpressing human rod transducin (Galpha(t)), which buffers Gbetagamma. Channel inhibition was blocked by 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) and bisindolylmaleimide I, selective inhibitors of phospholipase Cbeta and protein kinase C (PKC), respectively. Inhibition was occluded by application of the PKC activator phorbol-12-myristate-13-acetate. Altogether, these data indicate that NK1 receptors inhibit Ca(V)3.2 channels through a voltage-independent signaling pathway that involves Galpha(q/11), phospholipase Cbeta, and PKC. Our results provide novel evidence regarding the mechanisms underlying T-type calcium channel modulation by G protein-coupled receptors. Functional coupling between Ca(V)3.2 channels and NK1 receptors may be relevant in neurogenic inflammation, neuronal rhythmogenesis, nociception, and other physiological processes.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Proteína Quinase C/fisiologia , Receptores da Neurocinina-1/fisiologia , Proteínas Recombinantes/antagonistas & inibidores , Canais de Cálcio Tipo T/fisiologia , Linhagem Celular , Humanos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/fisiologia
11.
Clin Exp Pharmacol Physiol ; 36(7): 619-25, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19594551

RESUMO

1. In the present study, we investigated the series of events involved in the contraction of tracheal smooth muscle induced by the re-addition of Ca(2+) in an in vitro experimental model in which Ca(2+) stores had been depleted and their refilling had been blocked by thapsigargin. 2. Mean (+/-SEM) contraction was diminished by: (i) inhibitors of store-operated calcium channels (SOCC), namely 100 micromol/L SKF-96365 and 100 micromol/L 1-(2-trifluoromethylphenyl) imidazole (to 66.3 +/- 4.4 and 41.3 +/- 5.2% of control, respectively); (ii) inhibitors of voltage-gated Ca(2+) channels Ca(V)1.2 channels, namely 1 micromol/L nifedipine and 10 micromol/L verapamil (to 86.2 +/- 3.4 and 76.9 +/- 5.9% of control, respectively); and (iii) 20 micromol/L niflumic acid, a non-selective inhibitor of Ca(2+)-dependent Cl(-) channels (to 41.1 +/- 9.8% of control). In contrast, contraction was increased 2.3-fold by 100 nmol/L iberiotoxin, a blocker of the large-conductance Ca(2+)-activated K(+) (BK) channels. 3. Furthermore, contraction was significantly inhibited when Na(+) in the bathing solution was replaced by N-methyl-D-glucamine (NMDG(+)) to 39.9 +/- 7.2% of control, but not when it was replaced by Li(+) (114.5 +/- 24.4% of control). In addition, when Na(+) had been replaced by NMDG(+), contractions were further inhibited by both nifedipine and niflumic acid (to 3.0 +/- 1.8 and 24.4 +/- 8.1% of control, respectively). Nifedipine also reduced contractions when Na(+) had been replaced by Li(+) (to 10.7 +/- 3.4% to control), the niflumic acid had no effect (116.0 +/- 4.5% of control). 4. In conclusion, the data of the present study demonstrate the roles of SOCC, BK channels and Ca(V)1.2 channels in the contractions induced by the re-addition of Ca(2+) to the solution bathing guinea-pig tracheal rings under conditions of Ca(2+)-depleted sarcoplasmic reticulum and inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase. The contractions were highly dependent on extracellular Na(+), suggesting a role for SOCC in mediating the Na(+) influx.


Assuntos
Cálcio/metabolismo , Canais de Cloreto/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Contração Muscular/fisiologia , Sódio/fisiologia , Traqueia/fisiologia , Animais , Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/fisiologia , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/fisiologia , Cobaias , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Sódio/farmacologia , Traqueia/efeitos dos fármacos
12.
Am J Physiol Lung Cell Mol Physiol ; 293(1): L191-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17449794

RESUMO

Airway smooth muscle (ASM) contracts partly due to an increase in cytosolic Ca(2+). In this work, we found that the contraction caused by histamine depends on external Na(+), possibly involving nonselective cationic channels (NSCC) and the Na(+)/Ca(2+) exchanger (NCX). We performed various protocols using isometric force measurement of guinea pig tracheal rings stimulated by histamine. We observed that force reached 53 +/- 1% of control during external Na(+) substitution by N-methyl-D-glucamine(+), whereas substitution by Li(+) led to no significant change (91 +/- 1%). Preincubation with KB-R7943 decreased the maximal force developed (52.3 +/- 5.6%), whereas preincubation with nifedipine did not (89.7 +/- 1.8%). Also, application of the nonspecific NCX blocker KB-R7943 and nifedipine on histamine-precontracted tracheal rings reduced force to 1 +/- 3%, significantly different from nifedipine alone (49 +/- 6%). Moreover, nonspecific NSCC inhibitors SKF-96365 and 2-aminoethyldiphenyl borate reduced force to 1 +/- 1% and 19 +/- 7%, respectively. Intracellular Ca(2+) measurements in isolated ASM cells showed that KB-R7943 and SKF-96365 reduced the peak and sustained response to histamine (0.20 +/- 0.1 and 0.19 +/- 0.09 for KB-R, 0.43 +/- 0.16 and 0.47 +/- 0.18 for SKF, expressed as mean of differences). Moreover, Na(+)-free solution only inhibited the sustained response (0.54 +/- 0.25). These data support an important role for NSCC and NCX during histamine stimulation. We speculate that histamine induces Na(+) influx through NSCC that promotes the Ca(2+) entry mode of NCX and Ca(V)1.2 channel activation, thereby causing contraction.


Assuntos
Histamina/farmacologia , Canais Iônicos/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Traqueia/citologia , Traqueia/efeitos dos fármacos , Animais , Separação Celular , Fluorescência , Cobaias , Imidazóis/farmacologia , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/antagonistas & inibidores , Contração Isométrica/efeitos dos fármacos , Masculino , Meglumina/farmacologia , Modelos Biológicos , Sódio/farmacologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tioureia/análogos & derivados , Tioureia/farmacologia
13.
Mol Pharmacol ; 71(1): 284-93, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17050807

RESUMO

Neurokinin (NK) 1 receptors and CaV2.3 calcium channels are both expressed in nociceptive neurons, and mice lacking either protein display altered responses to noxious stimuli. Here, we examined modulation of CaV2.3 through NK1 receptors expressed in human embryonic kidney 293 cells. We find that NK1 receptors generate complex modulation of CaV2.3. In particular, weak activation of these receptors evokes mainly stimulation of CaV2.3, whereas strong receptor activation elicits profound inhibition that overlaps with channel stimulation. Unlike R-type channels encoded by CaV2.3, L-type (CaV1.3), N-type (CaV2.2), and P/Q-type (CaV2.1) channels are inhibited, but not stimulated, through NK1 receptors. Pharmacological experiments show that protein kinase C (PKC) mediates stimulation of CaV2.3 through NK1 receptors. The signaling mechanisms underlying inhibition were explored by expressing proteins that buffer either Galpha(q/11) (regulator of G protein signaling protein 3T and carboxyl-terminal region of phospholipase C-beta1) or Gbeta gamma subunits (transducin and the carboxyl-terminal region of bovine G-protein-coupled receptor kinase). A fast component of inhibition was attenuated by buffering Gbeta gamma, whereas a slow component of inhibition was reduced by buffering Galpha(q/11). When both Gbeta gamma and Galpha(q/11) were simultaneously buffered in the same cells, inhibition was virtually eliminated, but receptor activation still triggered substantial stimulation of CaV2.3. We also report that NK1 receptors accelerate the inactivation kinetics of CaV2.3 currents. Altogether, our results indicate that NK1 receptors modulate CaV2.3 using three different signaling mechanisms: a fast inhibition mediated by Gbeta gamma, a slow inhibition mediated by Galpha(q/11), and a slow stimulation mediated by PKC. This new information concerning R-type calcium channels and NK1 receptors may help in understanding nociception, synaptic plasticity, and other physiological processes.


Assuntos
Encéfalo/fisiologia , Canais de Cálcio Tipo R/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Receptores da Neurocinina-1/fisiologia , Animais , Canais de Cálcio Tipo R/genética , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Eletrofisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Humanos , Rim , Cinética , Potenciais da Membrana , Técnicas de Patch-Clamp , Plasmídeos , Proteína Quinase C/metabolismo , Coelhos , Proteínas Recombinantes/metabolismo , Transfecção
14.
Am J Physiol Cell Physiol ; 292(1): C573-80, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16855219

RESUMO

Ca(2+) influx through voltage-gated R-type (Ca(V)2.3) Ca(2+) channels is important for hormone and neurotransmitter secretion and other cellular events. Previous studies have shown that Ca(V)2.3 is both inhibited and stimulated through signaling mechanisms coupled to muscarinic ACh receptors. We previously demonstrated that muscarinic stimulation of Ca(V)2.3 is blocked by regulator of G protein signaling (RGS) 2. Here we investigated whether muscarinic inhibition of Ca(V)2.3 is antagonized by RGS3. RGS3 is particularly interesting because it contains a lengthy ( approximately 380 residue) amino-terminal domain of uncertain physiological function. Ca(V)2.3, M(2) muscarinic ACh receptors (M(2)R), and various deletion mutants of RGS3, including its native isoform RGS3T, were expressed in HEK293 cells, and agonist-dependent inhibition of Ca(V)2.3 was quantified using whole cell patch-clamp recordings. Full-length RGS3, RGS3T, and the core domain of RGS3 were equally effective in antagonizing inhibition of Ca(V)2.3 through M(2)R. These results identify RGS3 and RGS3T as potential physiological regulators of R-type Ca(2+) channels. Furthermore, they suggest that the signaling activity of RGS3 is unaffected by its extended amino-terminal domain. Confocal microscopy was used to examine the intracellular locations of four RGS3-enhanced green fluorescent protein fusion proteins. The RGS3 core domain was uniformly distributed throughout both cytoplasm and nucleus. By contrast, full-length RGS3, RGS3T, and the amino-terminal domain of RGS3 were restricted to the cytoplasm. These observations suggest that the amino terminus of RGS3 may serve to confine it to the cytoplasmic compartment where it can interact with cell surface receptors, heterotrimeric G proteins, and other signaling proteins.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Receptor Muscarínico M2/antagonistas & inibidores , Receptor Muscarínico M2/fisiologia , Canais de Cálcio Tipo R/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Linhagem Celular , Citoplasma/metabolismo , Condutividade Elétrica , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Técnicas de Patch-Clamp , Isoformas de Proteínas/fisiologia , Proteínas RGS , Transdução de Sinais/fisiologia , Distribuição Tecidual
15.
Pflugers Arch ; 449(3): 271-7, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15452709

RESUMO

We describe a novel, strongly outwardly rectifying anion current in Xenopus laevis oocytes, that we have named I(Cl,Or)- The properties of I(Cl,Or) are different from those of any other anion conductance previously described in these cells. Typically, I(Cl,Or) amplitude was small when extracellular Cl- (Cle) was the permeant anion. However, when Cle was replaced by lyotropic anions I(Cl,Or) became evident as a time-independent current. (ICl,Or) was voltage dependent and showed a remarkable outwards rectification with little or no inwards tail current. The relative selectivity sequence determined from current amplitudes was: SCN- > or = ClO4- > I- > Br- > or = NO3- > Cl- x I(Cl,Or) was insensitive to Gd3+ but was blocked by micromolar concentrations of niflumic acid, DIDS or Zn2+. Furthermore, I(Cl,Or) was not affected by buffering intracellular Ca2+ with BAPTA. Low extracellular pH inhibited I(Cl,Or) with a pK of 5.8. We propose that I(Cl,Or) might result from activation of endogenous ClC-5-like Cl- channels present in Xenopus oocytes.


Assuntos
Canais de Cloreto/fisiologia , Cloro/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Oócitos/fisiologia , Animais , Antiporters/fisiologia , Cálcio/metabolismo , Células Cultivadas , Concentração de Íons de Hidrogênio , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA