Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Phys Chem Chem Phys ; 26(35): 23003-23009, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39171680

RESUMO

The reactivity of the nitrate radical (NO3˙) with organophosphorus and amidic actinide and lanthanide complexing agents of interest to nuclear solvent extraction applications was measured, resulting in the first-ever reported bimolecular rate constants for this radicals' reactions in dodecane solution. The order of reactivity for neutral organophosphorus compounds showed faster rate constants with increasing electron density on the phosphoryl phosphorus atom, indicating an increasing facility for electron abstraction reactions occurring in addition to H-atom abstraction from the ligand alkane chains. The only acidic organophosphorus compound investigated, HEH[EHP], showed low reactivity with the NO3˙ radical, attributed to its dimerization in this non-polar solvent. Amide ligand reaction rates were faster than for organophosphorus molecules, suggesting more facile H-atom abstraction from carbonyl activated methylene and amyl groups. While all rate constants were slower than the diffusion-limited rate they were still rapid enough to result in significant oxidation of solvent extraction ligands in dodecane solution.

2.
Dalton Trans ; 53(22): 9262-9266, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776119

RESUMO

First-of-a-kind temperature-controlled electron pulse radiolysis experiments facilitated the radiation-induced formation of Am(IV) in concentrated (6.0 M) HNO3, and enabled the derivation of Arrhenius and Eyring activation parameters for instigating the radical reaction between NO3˙ and Am(III).

4.
Dalton Trans ; 53(16): 6881-6891, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38407412

RESUMO

A systematic study of the impact on the chemical reactivity of the oxidising n-dodecane radical cation (RH˙+) with f-element complexed 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) has been undertaken utilizing time-resolved electron pulse radiolysis/transient absorption spectroscopy and high-level quantum mechanical calculations. Lanthanide ion complexed species, [Ln((HEH[EHP])2)3], exhibited vastly increased reactivity (over 10× faster) in comparison to the non-complexed ligand in n-dodecane solvent, whose rate coefficient was k = (4.66 ± 0.22) × 109 M-1 s-1. Similar reactivity enhancement was also observed for the corresponding americium ion complex, k = (5.58 ± 0.30) × 1010 M-1 s-1. The vastly increased reactivity of these f-element complexes was not due to simple increased diffusion-control of these reactions; rather, enhanced hole transfer mechanisms for the complexes were calculated to become energetically more favourable. Interestingly, the observed reactivity trend with lanthanide ion size was not linear; instead, the rate coefficients showed an initial increase (Lu to Yb) followed by a decrease (Tm to Ho), followed by another increase (Dy to La). This behaviour was excellently predicted by the calculated reaction volumes of these complexes. Complementary cobalt-60 gamma irradiations for select lanthanide complexes demonstrated that the measured kinetic differences translated to increased ligand degradation at steady-state timescales, affording ∼38% increase in ligand loss of a 1 : 1 [La((HEH[EHP])2)3] : HEH[EHP] ratio system.

5.
J Phys Chem A ; 128(3): 590-598, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215218

RESUMO

Despite the availability of transuranic elements increasing in recent years, our understanding of their most basic and inherent radiation chemistry is limited and yet essential for the accurate interpretation of their physical and chemical properties. Here, we explore the transient interactions between trivalent californium ions (Cf3+) and select inorganic radicals arising from the radiolytic decomposition of common anions and functional group constituents, specifically the dichlorine (Cl2•-) and sulfate (SO4•-) radical anions. Chemical kinetics, as measured using integrated electron pulse radiolysis and transient absorption spectroscopy techniques, are presented for the reactions of these two oxidizing radicals with Cf3+ ions. The derived and ionic strength-corrected second-order rate coefficients (k) for these radiation-induced processes are k(Cf3+ + Cl2•-) = (8.28 ± 0.61) × 105 M-1 s-1 and k(Cf3+ + SO4•-) = (9.50 ± 0.43) × 108 M-1 s-1 under ambient temperature conditions (22 ± 1 °C).

6.
Phys Chem Chem Phys ; 26(5): 4039-4046, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38224090

RESUMO

Technetium is a problematic radioisotope for used nuclear fuel (UNF) and subsequent waste management owing to its high environmental mobility and coextraction in reprocessing technologies as the pertechnetate anion (TcO4-). Consequently, several strategies are under development to control the transport of this radioisotope. A proposed approach is to use diaminoguanidine (DAG) for TcO4- and transuranic ion redox control. Although the initial DAG molecule is ultimately consumed in the redox process, its susceptibility to radiolysis is currently unknown under envisioned UNF reprocessing conditions, which is a critical knowledge gap for evaluating its overall suitability for this role. To this end, we report the impacts of steady-state gamma irradiation on the rate of DAG radiolysis in water, aqueous 2.0 M nitric acid (HNO3), and in a biphasic solvent system composed of aqueous 2.0 M HNO3 in contact with 1.5 M N,N-di-(2-ethylhexyl)isobutyramide (DEHiBA) dissolved in n-dodecane. Additionally, we report chemical kinetics for the reaction of DAG with key transients arising from electron pulse radiolysis, specifically the hydrated electron (eaq-), hydrogen atom (H˙), and hydroxyl (˙OH) and nitrate (NO3˙) radicals. The DAG molecule exhibited significant reactivity with the ˙OH and NO3˙ radicals, indicating that oxidation would be the predominant degradation pathway in radiation environments. This is consistent with its role as a reducing agent. Steady-state gamma irradiations demonstrated that DAG is readily degraded within a few hundred kilogray, the rate of which was found to increase upon going from water to HNO3 containing solutions and solvents systems. This was attributed to a thermal reaction between DAG and the predominant HNO3 radiolysis product, nitrous acid (HNO2), k(DAG + HNO2) = 5480 ± 85 M-1 s-1. Although no evidence was found for the radiolysis of DAG altering the radiation chemistry of the contacted DEHiBA/n-dodecane phase in the investigated biphasic system, the utility of DAG as a redox control reagent will likely be limited by significant competition with its degradation by HNO2.

7.
Chemphyschem ; 24(24): e202300465, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37877631

RESUMO

The reactivity of chromium(III) species with the major oxidizing and reducing radiolysis products of water was investigated in aqueous solutions at temperatures up to 150 °C. The reaction between the hydrated electron (eaq - ) and Cr(III) species showed a positive temperature dependence over this temperature range. The reaction was also studied in pH 2.5 and 3.5 solutions for the first time. This work also studied the reaction between acidic Cr(III) species and the hydroxyl radical (⋅OH). It was found that Cr3+ did not react significantly with the ⋅OH radical, but the first hydrolysis species, Cr(OH)2+ , did with a rate coefficient of k= (7.2±0.3)×108  M-1 s-1 at 25 °C. The oxidation of Cr(OH)2+ by the ⋅OH radical formed an absorbing product species that ultimately oxidized to give Cr(VI). These newly measured reaction rates allow for the development of improved models of aqueous chromium speciation for the effective remediation of liquid high-level nuclear waste via vitrification processes.

8.
Chemosphere ; 344: 140308, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769907

RESUMO

Neutral low-molecular-weight organics such as methyl nitrate that can readily pass through reverse osmosis (RO) membranes employed in potable water reuse facilities attract interest owing to public health considerations. In this study, a novel determination method based on high-performance liquid chromatography, online photochemical conversion to peroxynitrite, and luminol chemiluminescence detection was developed for methyl nitrate measurement in treated water. The maximum photochemical conversion efficiency of methyl nitrate to peroxynitrite was found to be 6.5% using a 222-nm excimer lamp. The calibration curve for the developed method was linear between 1.0 × 10-9 and 1.0 × 10-7 M, and the limit of detection was 0.3 nM (0.03 µg/L) given an injection volume of 200 µL. The methyl nitrate concentrations in RO permeate from reclaimed wastewater and product water after subsequent treatment by a UV/H2O2 advanced oxidation process (AOP) were 2.2 and 22.5 nM (0.17 and 1.7 µg/L), respectively. UV irradiation of RO permeate in the laboratory using a low-pressure Hg lamp confirmed the formation of methyl nitrate in the permeate in the absence of H2O2 and residual chloramines. This chemiluminescent detection method for methyl nitrate will promote a greater understanding of the origin and formation of this treatment byproduct in reclaimed wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Peróxido de Hidrogênio/química , Ácido Peroxinitroso , Purificação da Água/métodos , Osmose
9.
Phys Chem Chem Phys ; 25(24): 16404-16413, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294439

RESUMO

The impact of trivalent lanthanide ion complexation and temperature on the chemical reactivity of N,N,N',N'-tetraoctyl diglycolamide (TODGA) with the n-dodecane radical cation (RH˙+) has been measured by electron pulse radiolysis and evaluated by quantum mechanical calculations. Additionally, Arrhenius parameters were determined for the reaction of the non-complexed TODGA ligand with the RH˙+ from 10-40 °C, giving the activation energy (Ea = 17.43 ± 1.64 kJ mol-1) and pre-exponential factor (A = (2.36 ± 0.05) × 1013 M-1 s-1). The complexation of Nd(III), Gd(III), and Yb(III) ions by TODGA yielded [LnIII(TODGA)3(NO3)3] complexes that exhibited significantly increased reactivity (up to 9.3× faster) with the RH˙+, relative to the non-complexed ligand: k([LnIII(TODGA)3(NO3)3] + RH˙+) = (8.99 ± 0.93) × 1010, (2.88 ± 0.40) × 1010, and (1.53 ± 0.34) × 1010 M-1 s-1, for Nd(III), Gd(III), and Yb(III) ions, respectively. The rate coefficient enhancement measured for these complexes exhibited a dependence on atomic number, decreasing as the lanthanide series was traversed. Preliminary reaction free energy calculations-based on a model [LnIII(TOGDA)]3+ complex system-indicate that both electron/hole and proton transfer reactions are energetically unfavorable for complexed TODGA. Furthermore, complementary average local ionization energy calculations showed that the most reactive region of model N,N,N',N'-tetraethyl diglycolamide (TEDGA) complexes, [LnIII(TEGDA)3(NO3)3], toward electrophilic attack is for the coordinated nitrate (NO3-) counter anions. Therefore, it is possible that radical reactions with the complexed NO3- counter anions dominate the differences in rates seen for the [LnIII(TODGA)3(NO3)3] complexes, and are likely responsible for the reported radioprotection in the presence of TODGA complexes.

10.
Environ Sci Technol ; 57(19): 7634-7643, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37141499

RESUMO

Advanced reduction processes (ARP) have garnered increasing attention for the treatment of recalcitrant chemical contaminants, most notably per- and polyfluoroalkyl substances (PFAS). However, the impact of dissolved organic matter (DOM) on the availability of the hydrated electron (eaq-), the key reactive species formed in ARP, is not completely understood. Using electron pulse radiolysis and transient absorption spectroscopy, we measured bimolecular reaction rates constant for eaq- reaction with eight aquatic and terrestrial humic substance and natural organic matter isolates ( kDOM,eaq-), with the resulting values ranging from (0.51 ± 0.01) to (2.11 ± 0.04) × 108 MC-1 s-1. kDOM,eaq- measurements at varying temperature, pH, and ionic strength indicate that activation energies for diverse DOM isolates are ≈18 kJ mol-1 and that kDOM,eaq- could be expected to vary by less than a factor of 1.5 between pH 5 and 9 or from an ionic strength of 0.02 to 0.12 M. kDOM,eaq- exhibited a significant, positive correlation to % carbonyl carbon for the isolates studied, but relationships to other DOM physicochemical properties were surprisingly more scattered. A 24 h UV/sulfite experiment employing chloroacetate as an eaq- probe revealed that continued eaq- exposure abates DOM chromophores and eaq- scavenging capacity over a several hour time scale. Overall, these results indicate that DOM is an important eaq- scavenger that will reduce the rate of target contaminant degradation in ARP. These impacts are likely greater in waste streams like membrane concentrates, spent ion exchange resins, or regeneration brines that have elevated DOM concentrations.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Água , Elétrons , Poluentes Químicos da Água/análise , Substâncias Húmicas
11.
J Phys Chem B ; 127(17): 3931-3938, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37084416

RESUMO

The octadentate hydroxypyridinone ligand 3,4,3-LI(1,2-HOPO) (abbreviated as HOPO) has been identified as a promising candidate for both chelation and f-element separation technologies, two applications that require optimal performance in radiation environments. However, the radiation robustness of HOPO is currently unknown. Here, we employ a combination of time-resolved (electron pulse) and steady-state (alpha self-radiolysis) irradiation techniques to elucidate the basic chemistry of HOPO and its f-element complexes in aqueous radiation environments. Chemical kinetics were measured for the reaction of HOPO and its Nd(III) ion complex ([NdIII(HOPO)]-) with key aqueous radiation-induced radical transients (eaq-, H• atom, and •OH and NO3• radicals). The reaction of HOPO with the eaq- is believed to proceed via reduction of the hydroxypyridinone moiety, while transient adduct spectra indicate that reactions with the H• atom and •OH and NO3• radicals proceeded by addition to HOPO's hydroxypyridinone rings, potentially allowing for the generation of an extensive suite of addition products. Complementary steady-state 241Am(III)-HOPO complex ([241AmIII(HOPO)]-) irradiations showed the gradual release of 241Am(III) ions with increasing alpha dose up to 100 kGy, although complete ligand destruction was not observed.

12.
Chemphyschem ; 24(5): e202200749, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470592

RESUMO

Acetohydroxamic acid (AHA) has been proposed for inclusion in advanced, single-cycle, used nuclear fuel reprocessing solvent systems for the reduction and complexation of plutonium and neptunium ions. For this application, a detailed description of the fundamental degradation of AHA in dilute aqueous nitric acid is required. To this end, we present a comprehensive, multiscale computer model for the coupled radiolytic and hydrolytic degradation of AHA in aqueous sodium nitrate and nitric acid solutions. Rate coefficients for the reactions of AHA and hydroxylamine (HA) with the oxidizing nitrate radical were measured for the first time using electron pulse radiolysis and used as inputs for the kinetic model. The computer model results are validated by comparison to experimental data from steady-state gamma ray irradiations, for which the agreement is excellent. The presented model accurately predicts the yields of the major degradation products of AHA: acetic acid, HA, nitrous oxide, and molecular hydrogen.

13.
RSC Adv ; 12(46): 29757-29766, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321097

RESUMO

Acetohydroxamic acid (AHA) is a small organic acid with a wide variety of industrial, biological, and pharmacological applications. A deep fundamental molecular level understanding of the mechanisms responsible for the radical-induced reactions of AHA in these environments is necessary to predict and control their behaviour and elucidate their interplay with other attendant chemical species, for example, the oxidative degradation products of AHA. To this end, we present a comprehensive, multiscale computer model for interrogating the radical-induced degradation of AHA in acidic aqueous solutions. Model predictions were critically evaluated by a systematic experimental radiation chemistry investigation, leveraging time-resolved electron pulse irradiation techniques for the measurement of new radical reaction rate coefficients, and steady-state gamma irradiations for the identification and quantification of AHA degradation products: acetic acid, hydroxylamine, nitrous oxide, and molecular hydrogen, with formic acid and methane as minor products. Excellent agreement was achieved between calculation and experiment, indicating that this fundamental model can accurately predict the degradation pathways of AHA under irradiation in acidic aqueous solutions.

14.
Environ Pollut ; 313: 120171, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113647

RESUMO

The immense production of plastic polymers combined with their discordancy with nature has led to vast plastic waste contamination across the geosphere, from the oceans to freshwater reservoirs, wetlands, remote snowpacks, sediments, air and multiple other environments. These environmental pollutants include microplastics (MP), typically defined as small and fragmented plastics less than 5 mm in size, and nanoplastics (NP), particles smaller than a micrometer. The formation of micro and nanoplastics in aqueous media to date has been largely attributed to fragmentation of plastics by natural (i.e., abrasion, photolysis, biotic) or industrial processes. We present a novel method to create small microplastics (≲ 5 µm) and nanoplastics in water from a wide variety of plastic materials using a small volume of a solubilizer liquid, such as n-dodecane, in combination with vigorous mixing. When the suspensions or solutions are subjected to ultrasonic mixing, the particle sizes decrease. Small micro- and nanoparticles were made from commercial, real world and waste (aged) polyethylene, polystyrene, polycarbonate and polyethylene terephthalate, in addition to other plastic materials and were analyzed using dark field microscopy, Raman spectroscopy and particle size measurements. The presented method provides a new and simple way to create specific size distributions of micro- and nanoparticles, which will enable expanded research on these plastic particles in water, especially those made from real world and aged plastics. The ease of NP and small MP formation upon initial mixing simulates real world environments, thereby providing further insight into the behavior of plastics in natural settings.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos , Plásticos , Polietileno , Polietilenotereftalatos , Poliestirenos , Suspensões , Água , Poluentes Químicos da Água/análise
15.
Inorg Chem ; 61(28): 10822-10832, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35776877

RESUMO

Despite the significant impact of radiation-induced redox reactions on the accessibility and lifetimes of actinide oxidation states, fundamental knowledge of aqueous actinide metal ion radiation chemistry is limited, especially for the late actinides. A quantitative understanding of these intrinsic radiation-induced processes is essential for investigating the fundamental properties of these actinides. We present here a picosecond electron pulse reaction kinetics study into the radiation-induced redox chemistry of trivalent berkelium (Bk(III)) and californium (Cf(III)) ions in acidic aqueous solutions at ambient temperature. New and first-of-a-kind, second-order rate coefficients are reported for the transient radical-induced reduction of Bk(III) and Cf(III) by the hydrated electron (eaq-) and hydrogen atom (H•), demonstrating a significant reactivity (up to 1011 M-1 s-1) indicative of a preference of these metals to adopt divalent states. Additionally, we report the first-ever second-order rate coefficients for the transient radical-induced oxidation of these elements by a reaction with hydroxyl (•OH) and nitrate (NO3•) radicals, which also exhibited fast reactivity (ca. 108 M-1 s-1). Transient Cf(II), Cf(IV), and Bk(IV) absorption spectra are also reported. Overall, the presented data highlight the existence of rich, complex, intrinsic late actinide radiation-induced redox chemistry that has the potential to influence the findings of other areas of actinide science.

16.
ACS Environ Au ; 2(3): 178-205, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37102145

RESUMO

UV-advanced reduction processes (UV-ARP) are an advanced water treatment technology characterized by the reductive transformation of chemical contaminants. Contaminant abatement in UV-ARP is most often accomplished through reaction with hydrated electrons (eaq -) produced from UV photolysis of chemical sensitizers (e.g., sulfite). In this Review, we evaluate the photochemical kinetics, substrate scope, and optimization of UV-ARP. We find that quantities typically reported in photochemical studies of natural and engineered systems are under-reported in the UV-ARP literature, especially the formation rates, scavenging capacities, and concentrations of key reactive species like eaq -. The absence of these quantities has made it difficult to fully evaluate the impact of operating conditions and the role of water matrix components on the efficiencies of UV-ARP. The UV-ARP substrate scope is weighted heavily toward contaminant classes that are resistant to degradation by advanced oxidation processes, like oxyanions and per- and polyfluoroalkyl substances. Some studies have sought to optimize the UV-ARP treatment of these contaminants; however, a thorough evaluation of the impact of water matrix components like dissolved organic matter on these optimization strategies is needed. Overall, the data compilation, analysis, and research recommendations provided in this Review will assist the UV-ARP research community in future efforts toward optimizing UV-ARP systems, modeling the eaq --based chemical transformation kinetics, and developing new UV-ARP systems.

17.
Phys Chem Chem Phys ; 23(43): 24589-24597, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710211

RESUMO

Specialized extractant ligands - such as tri-butyl phosphate (TBP), N,N-di-(2-ethylhexyl)butyramide (DEHBA), and N,N-di-2-ethylhexylisobutryamide (DEHiBA) - have been developed for the recovery of uranium from used nuclear fuel by reprocessing solvent extraction technologies. These ligands must function in the presence of an intense multi-component radiation field, and thus it is critical that their radiolytic behaviour be thoroughly evaluated. This is especially true for their metal complexes, where there is negligible information on the influence of complexation on radiolytic reactivity, despite the prevalence of metal complexes in used nuclear fuel reprocessing solvent systems. Here we present a kinetic investigation into the effect of uranyl (UO22+) complexation on the reaction kinetics of the dodecane radical cation (RH˙+) with TBP, DEHBA, and DEHiBA. Complexation had negligible effect on the reaction of RH˙+ with TBP, for which a second-order rate coefficient (k) of (1.3 ± 0.1) × 1010 M-1 s-1 was measured. For DEHBA and DEHiBA, UO22+ complexation afforded an increase in their respective rate coefficients: k(RH˙+ + [UO2(NO3)2(DEHBA)2]) = (2.5 ± 0.1) × 1010 M-1 s-1 and k(RH˙+ + [UO2(NO3)2(DEHiBA)2]) = (1.6 ± 0.1) × 1010 M-1 s-1. This enhancement with complexation is indicative of an alternative RH˙+ reaction pathway, which is more readily accessible for [UO2(NO3)2(DEHBA)2] as it exhibited a much larger kinetic enhancement than [UO2(NO3)2(DEHiBA)2], 2.6× vs. 1.4×, respectively. Complementary quantum mechanical calculations suggests that the difference in reaction kinetic enhancement between TBP and DEHBA/DEHiBA is attributed to a combination of reaction pathway (electron/hole transfer vs. proton transfer) energetics and electron density distribution, wherein attendant nitrate counter anions effectively 'shield' TBP from RH˙+ electron transfer processes.

18.
Dalton Trans ; 50(31): 10853-10859, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34296716

RESUMO

Insight into the effects of radiolytic processes on the actinides is critical for advancing our understanding of their solution chemistry because the behaviour of these elements cannot be easily separated from the influence of their inherent radiation field. However, minimal information exists on the radiation-induced redox behaviour of curium (Cm), a key trivalent transuranic element present in used nuclear fuel and frequently used as an alpha radiation source. Here we present a kinetic study on the aqueous redox reactions of Cm(iii) with radicals generated through the radiolysis of aqueous media. In particular, we probe reaction kinetics in nitric acid solutions that are used as the aqueous phase component of used nuclear fuel reprocessing solvent systems. Second-order rate coefficients (k) were measured for the reaction of Cm(iii) with the hydrated electron (eaq-, k = (1.25 ± 0.03) × 1010 M-1 s-1), hydrogen atom (H˙, k = (5.16 ± 0.37) × 108 M-1 s-1), hydroxyl radical (˙OH, k = (1.69 ± 0.24) × 109 M-1 s-1), and nitrate radical (NO3˙, k = (4.83 ± 0.09) × 107 M-1 s-1). Furthermore, the first-ever Cm(ii) absorption spectrum (300-700 nm) is also reported. These kinetic data dispel the status quo notion of Cm(iii) possessing little to no redox chemistry in aqueous solution, and suggest that the resulting Cm(ii) and Cm(iv) transients could exist in irradiated aqueous solutions and be available to undergo subsequent redox chemistry with other solutes.

19.
Phys Chem Chem Phys ; 23(2): 1343-1351, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367347

RESUMO

The candidate An(iii)/Ln(iii) separation ligand hexa-n-octylnitrilo-triacetamide (HONTA) was irradiated under envisioned SELECT (Solvent Extraction from Liquid waste using Extractants of CHON-type for Transmutation) process conditions (n-dodecane/0.1 M HNO3) using a solvent test loop in conjunction with cobalt-60 gamma irradiation. The extent of HONTA radiolysis and complementary degradation product formation was quantified by HPLC-ESI-MS/MS. Further, the impact of HONTA radiolysis on process performance was evaluated by measuring the change in 243Am and 154Eu distribution ratios as a function of absorbed gamma dose. HONTA was found to decay exponentially with increasing dose, affording a dose coefficient of d = (4.48 ± 0.19) × 10-3 kGy-1. Multiple degradation products were detected by HPLC-ESI-MS/MS with dioctylamine being the dominant quantifiable species. Both 243Am and 154Eu distribution ratios exhibited an induction period of ∼70 kGy for extraction (0.1 M HNO3) and back-extraction (4.0 M HNO3) conditions, after which both values decreased with absorbed dose. The decrease in distribution ratios was attributed to a combination of the destruction of HONTA and ingrowth of dioctylamine, which is capable of interfering in metal ion complexation. The loss of HONTA with absorbed gamma dose was predominantly attributed to its reaction with the n-dodecane radical cation (R˙+). These R˙+ reaction kinetics were measured for HONTA and its 241Am and 154Eu complexes using picosecond pulsed electron radiolysis techniques. All three second-order rate coefficients (k) were essentially diffusion limited in n-dodecane indicating a significant reaction pathway: k(HONTA + R˙+) = (7.6 ± 0.8) × 109 M-1 s-1, k(Am(HONTA)2 + R˙+) = (7.1 ± 0.7) × 1010 M-1 s-1, and k(Eu(HONTA)2 + R˙+) = (9.5 ± 0.5) × 1010 M-1 s-1. HONTA-metal ion complexation afforded an order-of-magnitude increase in rate coefficient. Nanosecond time-resolved measurements showed that both direct and indirect HONTA radiolysis yielded the short-lived (<100 ns) HONTA radical cation and a second long-lived (µs) species identified as the HONTA triplet excited state. The latter was confirmed by a series of oxygen quenching picosecond pulsed electron measurements, affording a quenching rate coefficient of k(3[HONTA]* + O2) = 2.2 × 108 M-1 s-1. Overall, both the HONTA radical cation and triplet excited state are important precursors to the suite of measured HONTA degradation products.

20.
Phys Chem Chem Phys ; 22(43): 24978-24985, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33099596

RESUMO

To mitigate third phase formation in next generation used nuclear fuel reprocessing technologies, the addition of 1-octanol has been trialed. However, contradictory reports on the radiolytic effect of 1-octanol incorporation on separation ligand degradation need to be resolved. Here, 50 mM N,N,N',N'-tetraoctyldiglycolamide (TODGA) dissolved in n-dodecane was gamma irradiated in the presence and absence of 1-octanol (2.5-10 vol%) and a 3.0 M HNO3 aqueous phase. Radiation-induced TODGA degradation exhibited pseudo-first-order decay kinetics as a function of absorbed gamma dose for all investigated solution and solvent system formulations. The addition of 1-octanol afforded diametrically different effects on the rate of TODGA degradation depending on solvent system formulation. For organic-only irradiations, 1-octanol promoted TODGA degradation (d = 0.0057 kGy-1 for zero 1-octanol present vs.∼0.0073 kGy-1 for 7.5-10 vol%) attributed to a favourable hydrogen atom abstraction reaction free energy (-0.31 eV) and the ability of 1-octanol to access a higher yield of n-dodecane radical cation (RH˙+) at sub-nanosecond timescales. This was rationalized by determination of the rate coefficient (k) for the reaction of 1-octanol with RH˙+, k = (1.23 ± 0.07) × 1010 M-1 s-1. In contrast, irradiation in the presence of 1-octanol and a 3.0 M HNO3 aqueous phase afforded significant radioprotection (d = 0.0054 kGy-1 for zero 1-octanol present vs.≤ 0.0044 kGy-1 for >2.5 vol%) that increases with 1-octanol concentration, relative to the single phase, organic-only solutions. This effect was attributed to the extraction of sufficiently high concentrations of HNO3 and H2O into the organic phase by TODGA and 1-octanol as adducts which interfere with the hydrogen atom abstraction process between the 1-octanol radical and TODGA. Our findings suggest that the addition of 1-octanol as a phase modifier will enhance the radiation robustness of TODGA-based separation technologies under envisioned solvent system conditions in the presence of aqueous HNO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA