RESUMO
Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid ß and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Astrócitos , Glucose , Glicólise , Hipocampo , Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Neurônios , Animais , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Hipocampo/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Ácido Láctico/metabolismo , Potenciação de Longa Duração , Memória/efeitos dos fármacos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas tau/metabolismo , Triptofano/metabolismoRESUMO
Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer Disease (AD), and recent proteomic studies highlight a disruption of glial carbohydrate metabolism with disease progression. Here, we report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN) in the first step of the kynurenine pathway, rescues hippocampal memory function and plasticity in preclinical models of amyloid and tau pathology by restoring astrocytic metabolic support of neurons. Activation of IDO1 in astrocytes by amyloid-beta 42 and tau oligomers, two major pathological effectors in AD, increases KYN and suppresses glycolysis in an AhR-dependent manner. Conversely, pharmacological IDO1 inhibition restores glycolysis and lactate production. In amyloid-producing APP Swe -PS1 ΔE9 and 5XFAD mice and in tau-producing P301S mice, IDO1 inhibition restores spatial memory and improves hippocampal glucose metabolism by metabolomic and MALDI-MS analyses. IDO1 blockade also rescues hippocampal long-term potentiation (LTP) in a monocarboxylate transporter (MCT)-dependent manner, suggesting that IDO1 activity disrupts astrocytic metabolic support of neurons. Indeed, in vitro mass-labeling of human astrocytes demonstrates that IDO1 regulates astrocyte generation of lactate that is then taken up by human neurons. In co-cultures of astrocytes and neurons derived from AD subjects, deficient astrocyte lactate transfer to neurons was corrected by IDO1 inhibition, resulting in improved neuronal glucose metabolism. Thus, IDO1 activity disrupts astrocytic metabolic support of neurons across both amyloid and tau pathologies and in a model of AD iPSC-derived neurons. These findings also suggest that IDO1 inhibitors developed for adjunctive therapy in cancer could be repurposed for treatment of amyloid- and tau-mediated neurodegenerative diseases.
RESUMO
Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions.
Assuntos
Radiação Cósmica , Marte , Voo Espacial , Camundongos , Masculino , Feminino , Animais , Meio Ambiente Extraterreno , Caracteres Sexuais , Radiação Ionizante , Astronautas , Radiação Cósmica/efeitos adversos , ImunidadeRESUMO
While fruit flies (Drosophila melanogaster) and humans exhibit immune system dysfunction in space, studies examining their immune systems' interactions with natural parasites in space are lacking. Drosophila parasitoid wasps modify blood cell function to suppress host immunity. In this study, naive and parasitized ground and space flies from a tumor-free control and a blood tumor-bearing mutant strain were examined. Inflammation-related genes were activated in space in both fly strains. Whereas control flies did not develop tumors, tumor burden increased in the space-returned tumor-bearing mutants. Surprisingly, control flies were more sensitive to spaceflight than mutant flies; many of their essential genes were downregulated. Parasitoids appeared more resilient than fly hosts, and spaceflight did not significantly impact wasp survival or the expression of their virulence genes. Previously undocumented mutant wasps with novel wing color and wing shape were isolated post-flight and will be invaluable for host-parasite studies on Earth.
RESUMO
Biomarkers, ranging from molecules to behavior, can be used to identify thresholds beyond which performance of mission tasks may be compromised and could potentially trigger the activation of countermeasures. Identification of homologous brain regions and/or neural circuits related to operational performance may allow for translational studies between species. Three discussion groups were directed to use operationally relevant performance tasks as a driver when identifying biomarkers and brain regions or circuits for selected constructs. Here we summarize small-group discussions in tables of circuits and biomarkers categorized by (a) sensorimotor, (b) behavioral medicine and (c) integrated approaches (e.g., physiological responses). In total, hundreds of biomarkers have been identified and are summarized herein by the respective group leads. We hope the meeting proceedings become a rich resource for NASA's Human Research Program (HRP) and the community of researchers.
RESUMO
Exposure to space galactic cosmic radiation is a principal consideration for deep space missions. While the effects of space irradiation on the nervous system are not fully known, studies in animal models have shown that exposure to ionizing radiation can cause neuronal damage and lead to downstream cognitive and behavioral deficits. Cognitive health implications put humans and missions at risk, and with the upcoming Artemis missions in which female crew will play a major role, advance critical analysis of the neurological and performance responses of male and female rodents to space radiation is vital. Here, we tested the hypothesis that simulated Galactic Cosmic Radiation (GCRSim) exposure disrupts species-typical behavior in mice, including burrowing, rearing, grooming, and nest-building that depend upon hippocampal and medial prefrontal cortex circuitry. Behavior comprises a remarkably well-integrated representation of the biology of the whole animal that informs overall neural and physiological status, revealing functional impairment. We conducted a systematic dose-response analysis of mature (6-month-old) male and female mice exposed to either 5, 15, or 50 cGy 5-ion GCRSim (H, Si, He, O, Fe) at the NASA Space Radiation Laboratory (NSRL). Behavioral performance was evaluated at 72 h (acute) and 91-days (delayed) postradiation exposure. Specifically, species-typical behavior patterns comprising burrowing, rearing, and grooming as well as nest building were analyzed. A Neuroscore test battery (spontaneous activity, proprioception, vibrissae touch, limb symmetry, lateral turning, forelimb outstretching, and climbing) was performed at the acute timepoint to investigate early sensorimotor deficits postirradiation exposure. Nest construction, a measure of neurological and organizational function in rodents, was evaluated using a five-stage Likert scale 'Deacon' score that ranged from 1 (a low score where the Nestlet is untouched) to 5 (a high score where the Nestlet is completely shredded and shaped into a nest). Differential acute responses were observed in females relative to males with respect to species-typical behavior following 15 cGy exposure while delayed responses were observed in female grooming following 50 cGy exposure. Significant sex differences were observed at both timepoints in nest building. No deficits in sensorimotor behavior were observed via the Neuroscore. This study revealed subtle, sexually dimorphic GCRSim exposure effects on mouse behavior. Our analysis provides a clearer understanding of GCR dose effects on species typical, sensorimotor and organizational behaviors at acute and delayed timeframes postirradiation, thereby setting the stage for the identification of underlying cellular and molecular events.
RESUMO
NASA is planning to resume human-crewed lunar missions and lay the foundation for human exploration to Mars. However, our knowledge of the overall effects of long-duration spaceflight on human physiology is limited. During spaceflight, astronauts are exposed to multiple risk factors, including gravitational changes, ionizing radiation, physiological stress, and altered circadian lighting. These factors contribute to pathophysiological responses that target different organ systems in the body. This review discusses the advancements in gravitational biology using Drosophila melanogaster, one of the first organisms to be launched into space. As a well-established spaceflight model organism, fruit flies have yielded significant information, including neurobehavioral, aging, immune, cardiovascular, developmental, and multi-omics changes across tissues and developmental stages, as detailed in this review.
Assuntos
Drosophila melanogaster , Voo Espacial , Humanos , Animais , Astronautas , Gravitação , DrosophilaRESUMO
Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFµg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFµg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFµg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFµg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFµg brains, with pronounced phenotypes in SFµg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight.
Assuntos
Gravidade Alterada , Voo Espacial , Ausência de Peso , Animais , Drosophila/genética , Drosophila melanogaster , Ausência de Peso/efeitos adversosRESUMO
As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.
Assuntos
Voo Espacial , Ausência de Peso , Animais , Astronautas/psicologia , Encéfalo , Humanos , Fatores de TempoRESUMO
A comprehensive understanding of spaceflight factors involved in immune dysfunction and the evaluation of biomarkers to assess in-flight astronaut health are essential goals for NASA. An elevated neutrophil-to-lymphocyte ratio (NLR) is a potential biomarker candidate, as leukocyte differentials are altered during spaceflight. In the reduced gravity environment of space, rodents and astronauts displayed elevated NLR and granulocyte-to-lymphocyte ratios (GLR), respectively. To simulate microgravity using two well-established ground-based models, we cultured human whole blood-leukocytes in high-aspect rotating wall vessels (HARV-RWV) and used hindlimb unloaded (HU) mice. Both HARV-RWV simulation of leukocytes and HU-exposed mice showed elevated NLR profiles comparable to spaceflight exposed samples. To assess mechanisms involved, we found the simulated microgravity HARV-RWV model resulted in an imbalance of redox processes and activation of myeloperoxidase-producing inflammatory neutrophils, while antioxidant treatment reversed these effects. In the simulated microgravity HU model, mitochondrial catalase-transgenic mice that have reduced oxidative stress responses showed reduced neutrophil counts, NLR, and a dampened release of selective inflammatory cytokines compared to wildtype HU mice, suggesting simulated microgravity induced oxidative stress responses that triggered inflammation. In brief, both spaceflight and simulated microgravity models caused elevated NLR, indicating this as a potential biomarker for future in-flight immune health monitoring.
Assuntos
Astronautas , Granulócitos/imunologia , Nível de Saúde , Linfócitos/imunologia , Neutrófilos/imunologia , Animais , Biomarcadores , Doadores de Sangue , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo , Voo Espacial , Simulação de Ausência de PesoRESUMO
Parkinson's disease is the second most common neurodegenerative disease after Alzheimer's disease and affects 1% of the population above 60 years old. Although Parkinson's disease commonly manifests with motor symptoms, a majority of patients with Parkinson's disease subsequently develop cognitive impairment, which often progresses to dementia, a major cause of morbidity and disability. Parkinson's disease is characterized by α-synuclein accumulation that frequently associates with amyloid-ß and tau fibrils, the hallmarks of Alzheimer's disease neuropathological changes; this co-occurrence suggests that onset of cognitive decline in Parkinson's disease may be associated with appearance of pathological amyloid-ß and/or tau. Recent studies have highlighted the appearance of the soluble form of the triggering receptor expressed on myeloid cells 2 (sTREM2) receptor in CSF during development of Alzheimer's disease. Given the known association of microglial activation with advancing Parkinson's disease, we investigated whether CSF and/or plasma sTREM2 differed between CSF biomarker-defined Parkinson's disease participant subgroups. In this cross-sectional study, we examined 165 participants consisting of 17 cognitively normal elderly subjects, 45 patients with Parkinson's disease with no cognitive impairment, 86 with mild cognitive impairment, and 17 with dementia. Stratification of subjects by CSF amyloid-ß and tau levels revealed that CSF sTREM2 concentrations were elevated in Parkinson's disease subgroups with a positive tau CSF biomarker signature, but not in Parkinson's disease subgroups with a positive CSF amyloid-ß biomarker signature. These findings indicate that CSF sTREM2 could serve as a surrogate immune biomarker of neuronal injury in Parkinson's disease.
Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/líquido cefalorraquidiano , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Receptores Imunológicos/sangue , Proteínas tau/líquido cefalorraquidiano , Idoso , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/complicações , Estudos Transversais , Demência/sangue , Demência/líquido cefalorraquidiano , Demência/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/classificação , Doença de Parkinson/complicaçõesRESUMO
Identifying preventive targets for Alzheimer's disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer's disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APPSwe-PS1ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-ß accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase (Tdo2), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APPSwe-PS1ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-ß oligomers.
Assuntos
Doença de Alzheimer/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase , Modelos Animais de Doenças , Regulação para Baixo , Eletroencefalografia , Ibuprofeno , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Reconhecimento Psicológico/efeitos dos fármacos , Triptofano Oxigenase/efeitos dos fármacosRESUMO
Studies of Alzheimer's disease (AD) have predominantly focused on two major pathologies: amyloid-ß (Aß) and hyperphosphorylated tau. These misfolded proteins can accumulate asymptomatically in distinct regions over decades. However, significant Aß accumulation can be seen in individuals who do not develop dementia, and tau pathology limited to the transentorhinal cortex, which can appear early in adulthood, is usually clinically silent. Thus, an interaction between these pathologies appears to be necessary to initiate and propel disease forward to widespread circuits. Recent multidisciplinary findings strongly suggest that the third factor required for disease progression is an aberrant microglial immune response. This response may initially be beneficial; however, a maladaptive microglial response eventually develops, fueling a feed-forward spread of tau and Aß pathology.
Assuntos
Doença de Alzheimer/imunologia , Microglia/imunologia , Animais , Encéfalo/imunologia , HumanosRESUMO
Microglia, the innate immune cells of the CNS, perform critical inflammatory and noninflammatory functions that maintain normal neural function. For example, microglia clear misfolded proteins, elaborate trophic factors, and regulate and terminate toxic inflammation. In Alzheimer's disease (AD), however, beneficial microglial functions become impaired, accelerating synaptic and neuronal loss. Better understanding of the molecular mechanisms that contribute to microglial dysfunction is an important objective for identifying potential strategies to delay progression to AD. The inflammatory cyclooxygenase/prostaglandin E2 (COX/PGE2) pathway has been implicated in preclinical AD development, both in human epidemiology studies and in transgenic rodent models of AD. Here, we evaluated murine models that recapitulate microglial responses to Aß peptides and determined that microglia-specific deletion of the gene encoding the PGE2 receptor EP2 restores microglial chemotaxis and Aß clearance, suppresses toxic inflammation, increases cytoprotective insulin-like growth factor 1 (IGF1) signaling, and prevents synaptic injury and memory deficits. Our findings indicate that EP2 signaling suppresses beneficial microglia functions that falter during AD development and suggest that inhibition of the COX/PGE2/EP2 immune pathway has potential as a strategy to restore healthy microglial function and prevent progression to AD.
Assuntos
Doença de Alzheimer/metabolismo , Microglia/imunologia , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Transdução de Sinais , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiotaxia/imunologia , Dinoprostona/fisiologia , Feminino , Expressão Gênica , Hipocampo/imunologia , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/imunologia , Terminações Pré-Sinápticas/metabolismo , Memória Espacial , TranscriptomaRESUMO
The biggest risk factor for developing Alzheimer's disease (AD) is age. Depending on the age of onset, AD is clinically categorized into either the early-onset form (before age 60years old), or the late-onset form (after age 65years old), with the vast majority of AD diagnosed as late onset (LOAD). LOAD is a progressive neurodegenerative disorder that involves the accumulation of ß-amyloid (Aß) plaques and neurofibrillary tangles in the brains of elderly patients. Affected individuals often experience symptoms including memory loss, confusion, and behavioral changes. Though many animal models of AD exist, very few are capable of analyzing the effect of older age on AD pathology. In an attempt to better model LOAD, we developed a novel "aged AD" model using Drosophila melanogaster. In our model, we express low levels of the human AD proteins APP (amyloid precursor protein) and BACE1 (ß-site APP cleaving enzyme BACE) specifically in the fly's central nervous system. Advantages of our model include the onset of behavioral and neuropathological symptoms later in the fly's lifespan due to a gradual accrual of Aß within the central nervous system (CNS), making age the key factor in the behavioral and neuroanatomical phenotypes that we observe in this model.
Assuntos
Idade de Início , Doença de Alzheimer/fisiopatologia , Regulação da Expressão Gênica/genética , Fatores Etários , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Ácido Aspártico Endopeptidases/genética , Antígenos CD8/genética , Antígenos CD8/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Longevidade/genética , Mutação/genética , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory loss and decreased synaptic function. Advances in transgenic animal models of AD have facilitated our understanding of this disorder, and have aided in the development, speed and efficiency of testing potential therapeutics. Recently, we have described the characterization of a novel model of AD in the fruit fly, Drosophila melanogaster, where we expressed the human AD-associated proteins APP and BACE in the central nervous system of the fly. Here we describe synaptic defects in the larval neuromuscular junction (NMJ) in this model. Our results indicate that expression of human APP and BACE at the larval NMJ leads to defective larval locomotion behavior, decreased presynaptic connections, altered mitochondrial localization in presynaptic motor neurons and decreased postsynaptic protein levels. Treating larvae expressing APP and BACE with the γ-secretase inhibitor L-685,458 suppresses the behavioral defects as well as the pre- and postsynaptic defects. We suggest that this model will be useful to assess and model the synaptic dysfunction normally associated with AD, and will also serve as a powerful in vivo tool for rapid testing of potential therapeutics for AD.
Assuntos
Doença de Alzheimer/patologia , Drosophila melanogaster/fisiologia , Sinapses/patologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Ácido Aspártico Endopeptidases/metabolismo , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Inibidores Enzimáticos/farmacologia , Humanos , Larva/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Fenótipo , Transporte Proteico/efeitos dos fármacos , Sinapses/metabolismo , TransgenesRESUMO
Study of the fruit fly, Drosophila melanogaster, has yielded important insights into the underlying molecular mechanisms of learning and memory. Courtship conditioning is a well-established behavioral assay used to study Drosophila learning and memory. Here, we describe the development of software to analyze courtship suppression assay data that correctly identifies normal or abnormal learning and memory traits of individual flies. Development of this automated analysis software will significantly enhance our ability to use this assay in large-scale genetic screens and disease modeling. The software increases the consistency, objectivity, and types of data generated.
Assuntos
Corte , Drosophila melanogaster/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Comportamento Sexual Animal , Software , Animais , Drosophila melanogaster/genética , Feminino , Genótipo , MasculinoRESUMO
A majority of the genes linked to human disease belong to evolutionarily conserved pathways found in simpler organisms, such as Caenorhabditis elegans and Drosophila melanogaster. The genes and pathways of these simple organisms can be genetically and pharmacologically manipulated to better understand the function of their orthologs in vivo, and how these genes are involved in the pathogenesis of different diseases. Often these manipulations can be performed much more rapidly in flies and worms than in mammals, and can generate high quality in vivo data that is translatable to mammalian systems. Other qualities also make these organisms particularly well suited to the study of human disease. For example, developing in vivo disease models can help illuminate the basic mechanisms underlying disease, as in vitro studies do not always provide the natural physiological complexity associated with many diseases. Invertebrate models are relatively inexpensive, easy to work with, have short lifespans, and often have very well characterized and stereotypical development and behavior. This is particularly true for the two invertebrate model organisms that this review will focus on: Caenorhabditis elegans and Drosophila melanogaster. In this review, we will first describe an overview of modeling Alzheimer's disease in flies and worms, and will then highlight some of the more recent advances that these "simple" animals have contributed to our understanding of Alzheimer's disease in recent years.
Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Animais , Animais Geneticamente Modificados , Humanos , Invertebrados/genética , Especificidade da EspécieRESUMO
Transgenic models of Alzheimer's disease (AD) have made significant contributions to our understanding of AD pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster, provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the Drosophila central nervous system. Biochemical, neuroanatomical, and behavioral analyses indicate that these flies exhibit aspects of clinical AD neuropathology and symptomology. These include the generation of Aß(40) and Aß(42), the presence of amyloid aggregates, dramatic neuroanatomical changes, defects in motor reflex behavior, and defects in memory. In addition, these flies exhibit external morphological abnormalities. Treatment with a γ-secretase inhibitor suppressed these phenotypes. Further, all of these phenotypes are present within the first few days of adult fly life. Taken together these data demonstrate that this transgenic AD model can serve as a powerful tool for the identification of AD therapeutic interventions.