Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Sci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955937

RESUMO

Recurrent implantation failure (RIF) is a complex and poorly understood clinical disorder characterized by failure to conceive after repeated embryo transfers. Endometrial receptivity (ER) is a prerequisite for implantation, and ER disorders are associated with RIF. However, little is known regarding the molecular mechanisms underlying ER in RIF. In the present study, RNA sequencing data from the mid-secretory endometrium of patients with and without RIF were analyzed to explore the potential long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in RIF. The analysis revealed 213 and 1485 differentially expressed mRNAs and lncRNAs, respectively (fold change ≥ 2 and p < 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these genes were mostly involved in processes related to immunity or inflammation. 5 key genes (TTR, ALB, TF, AFP, and CFTR) and a key module including 14 hub genes (AFP, ALB, APOA1, APOA2, APOB, APOH, FABP1, FGA, FGG, GC, ITIH2, SERPIND1, TF and TTR) were identified in the protein-protein interaction (PPI) network. The 5 key genes were used to further explore the lncRNA-miRNA-mRNA regulatory network. Finally, the drug ML-193 based on the 14 hub genes was identifed through the CMap. After ML-193 treatment, endometrial cell proliferation was increased, the hub genes were mostly down-regulated, and the ER marker HOXA10 was up-regulated. These results offer insights into the regulatory mechanisms of lncRNAs and mRNAs and suggest ML-193 as a therapeutic agent for RIF by enhancing ER.

2.
Urol Int ; : 1-13, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657590

RESUMO

BACKGROUND: Urine storage and excretion require a network of interactions in the urinary tract and the central nervous system, which is mediated by a reservoir of water in the bladder and the outlet to the bladder neck, urethra, and external urethral sphincter. Through communicating and coordinating each other, micturition system eventually showed a switch-like activity pattern. SUMMARY: At cervicothoracic and lumbosacral spine, the spinal reflex pathway of the lower urinary tract (LUT) received mechanosensory input from the urothelium to regulate the bladder contraction activity, thereby controlled urination voluntarily. Impairment of above-mentioned any level could result in lower urinary tract dysfunction, placed a huge burden on patients and society. Specific expression of purinergic receptors and transient receptor potential (TRP) channels are thought to play an important role in urinary excretion in the LUT. KEY MESSAGES: This article reviewed the knowledge about the voiding reflex and described the role and function of TRP channels during voiding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA