Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sci Rep ; 14(1): 11206, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755178

RESUMO

Contamination of soils by Molybdenum (Mo) has raised increasing concern worldwide. Both fulvic acid (FA) and humic acid (HA) possess numerous positive properties, such as large specific surface areas and microporous structure that facilitates the immobilization of the heavy metal in soils. Despite these characteristics, there have been few studies on the microbiology effects of FA and HA. Therefore, this study aimed to assess the Mo immobilization effects of FA and HA, as well as the associated changes in microbial community in Mo-contaminated soils (with application rates of 0%, 0.5% and 1.0%). The result of the incubation demonstrated a decrease in soil pH (from 8.23 ~ 8.94 to 8.05 ~ 8.77). Importantly, both FA and HA reduced the exchangeable fraction and reducible fraction of Mo in the soil, thereby transforming Mo into a more stable form. Furthermore, the application of FA and HA led to an increase in the relative abundance of Actinobacteriota and Firmicutes, resulting in alterations to the microbial community structure. However, it is worth noting that due to the differing structures and properties of FA and HA, these outcomes were not entirely consistent. In summary, the aging of FA and HA in soil enhanced their capacity to immobilization Mo as a soil amendment. This suggests that they have the potential to serve as effective amendments for the remediation of Mo-contaminated soils.


Assuntos
Substâncias Húmicas , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Substâncias Húmicas/análise , Poluentes do Solo/química , Benzopiranos/química , Benzopiranos/farmacologia , Molibdênio/química , Solo/química , Concentração de Íons de Hidrogênio , Bactérias/efeitos dos fármacos , Microbiota/efeitos dos fármacos
2.
Neurochem Int ; 177: 105747, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657682

RESUMO

Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , AVC Isquêmico , Humanos , AVC Isquêmico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Transdução de Sinais/fisiologia , Estresse Oxidativo/fisiologia , Isquemia Encefálica/metabolismo
3.
Aging (Albany NY) ; 16(1): 820-843, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38198170

RESUMO

A thorough assessment of lactate-related genes (LRGs) in different types of human cancers is currently lacking. To elucidate the molecular landscape of LRGs, we conducted a comprehensive analysis using genomic, mRNA, and microRNA expression profiles and developed a lactate score model using the least absolute shrinkage and selection operator (LASSO) algorithm. We found that our lactate score could be a prognostic marker instead of LDHA for several cancer patients who possess high-frequency variants in LRGs. The lactate score also demonstrated an association with CD8+ T cells infiltration in multiple cancer types. Furthermore, our findings indicate that the lactate score holds promise as a potential biomarker for immunotherapy in patients with bladder cancer (BLCA) and skin cutaneous melanoma (SKCM). Among the seventeen genes of the lactate score model, PDP1 showed the strongest positive correlation with lactate score and the potential as a standalone biomarker for prognosis. In general, our study has yielded crucial insights into the potential application of the lactate score as a predictive biomarker for both survival outcomes and the response to immunotherapy. By recognizing the prognostic significance of lactate metabolism, we open avenues for further investigations aimed at harnessing the therapeutic potential of lactate.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Ácido Láctico , Prognóstico , Melanoma/genética , Melanoma/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Imunoterapia , Biomarcadores
4.
Artigo em Inglês | MEDLINE | ID: mdl-38231051

RESUMO

BACKGROUND: Dragon's blood is widely consumed in China, Vietnam and Laos to promote blood circulation. A Compound Dragon's blood capsule (CDC) is a patented medicine composed of dragon's blood, notoginseng, and borneol. This combination is purported to stabilize coronary heart disease and myocardial ischemia. However, the possible mechanisms and the characterization of its drug targets' relevance at the systemic level remain unclear. AIM: The present study aims to reveal the potential mechanisms of CDC's anti-myocardial ischemia effect. MATERIALS AND METHODS: The potential mechanisms were investigated by network pharmacology and qRT-PCR was used to verify the expression levels of key genes of PI3k-Akt pathway. RESULTS: S1PR2 and AGTR1 were the common targets, which involved 6 biological processes annotated by KEGG and GO analysis. The qRT-PCR results showed a remarkable increase in the expression of Pi3k, Pdk1, Akt, Mdm2, Bcl2, and mTOR. Results also showed a decline in the expression of P53 and Casp3 after CDC intervention. CONCLUSION: CDC has a significant anti-myocardial ischemia effect through the PI3k/Akt pathway, which demonstrates that CDC is a suitable adjuvant to treat CHD and provides a theoretical basis for its further clinical application.

5.
J Comput Chem ; 45(3): 150-158, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37698200

RESUMO

A pair of simulated left and right circularly polarized ultra-fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG-QTAIM) using third-generation eigenvector-trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C-C bond to external torsions as was the case for second-generation eigenvector-trajectories. The mechanical properties, in particular, the bond-flexing and bond-torsion were found to increase depending on the plane of the applied laser pulses. The bond-flexing and bond-torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally-dependent effects of the long-lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG-QTAIM investigations. Future planned investigations using ultra-fast circularly polarized lasers are briefly discussed.

6.
Molecules ; 28(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38138618

RESUMO

In this study, we designed and developed a DOX nanodrug delivery system (PEG-GA@ZIF-8@DOX) using ZIF-8 as the carrier and glycyrrhetinic acid (GA) as the targeting ligand. We confirmed that DOX was loaded and PEG-GA was successfully modified on the surface of the nanoparticles. The in vitro release profile of the system was investigated at pH 5.0 and 7.4. The cellular uptake, in vitro cytotoxicity, and lysosomal escape characteristics were examined using HepG2 cells. We established an H22 tumor-bearing mouse model and evaluated the in vivo antitumor activity. The results showed that the system had a uniform nanomorphology. The drug loading capacity was 11.22 ± 0.87%. In acidic conditions (pH 5.0), the final release rate of DOX was 57.73%, while at pH 7.4, it was 25.12%. GA-mediated targeting facilitated the uptake of DOX by the HepG2 cells. PEG-GA@ZIF-8@DOX could escape from the lysosomes and release the drug in the cytoplasm, thus exerting its antitumor effect. When the in vivo efficacy was analyzed, we found that the tumor inhibition rate of PEG-GA@ZIF-8@DOX was 67.64%; it also alleviated the loss of the body weight of the treated mice. This drug delivery system significantly enhanced the antitumor effect of doxorubicin in vitro and in vivo, while mitigating its toxic side effects.


Assuntos
Ácido Glicirretínico , Neoplasias Hepáticas , Camundongos , Animais , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Sistemas de Liberação de Medicamentos/métodos
7.
Aging (Albany NY) ; 15(18): 9479-9498, 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37747262

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have shown efficacy in patients with metastatic urothelial cancer (mUC), however, only a small subset of patients could benefit from ICIs. Identifying predictive biomarkers of ICIs in patients with mUC is clinical meaningful for patient stratification and administration. METHODS: Clinical and transcriptomic data of mUC patients treated with ICIs from mUC cohort (IMvigor210 study) was utilized to explore the predictive biomarkers. LASSO Cox regression was performed to construct a predictive model. The predictive model was trained and tested in the mUC cohort, and then exploratively tested in clear cell renal cell carcinoma (ccRCC) and melanoma cohorts in which patients also received ICIs regimens. RESULTS: The differentially expressed genes (DEGs) in complement and coagulation cascades pathway (CCCP) were mainly enriched in non-responders of ICIs in the mUC cohort. A CCCP risk score was constructed based on the DEGs in CCCP. Patients with a low-risk score were more responsive to ICIs and had better overall survival (OS) than those with a high-risk score in the training set (HR, 0.38; 95%CI, 0.27-0.53, P<0.001) and the test set (HR, 0.34; 95%CI, 0.17-0.71, P=0.003). The association between the CCCP risk score and OS remained significant in the multivariable cox regression by adjusting PD-L1 expression and TMB (P<0.05). In addition, there was no difference for OS in the bladder cancer patients without ICIs (TCGA-BLCA cohort, HR, 0.76, 95%CI, 0.49-1.18, P=0.22), suggesting a predictive but not prognostic effect of the risk score. For the exploratory analysis, consistent results were observed that low-risk group showed superior OS in ccRCC cohort (HR, 0.52, 95%CI, 0.37-0.75, P<0.001) and melanoma cohort (HR, 0.27, 95%CI, 0.12-0.62, P=0.001). CONCLUSIONS: Our study showed that the CCCP risk score is an independent biomarker that predicts the efficacy of ICIs in mUC patients. The patients with a low-risk score tend to have a better response to ICIs and a longer life time probably due to the immune-activated TME. Further studies are needed to validate the clinical utility of the seven-gene signature.

8.
Virus Genes ; 59(5): 786-789, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37530925

RESUMO

Northern pintail (Anas acuta) is a migratory waterfowl that can transmit various viruses. The genome sequence of a Sobemovirus was determined using metagenomic sequencing from the feces of northern pintail (Anas acuta) in Xinjiang, northwest China. The virus possesses a linear RNA molecule of 4177 bp and is most closely related to isolates SoMV-WA (GenBank accession no. HM163159.1) and ATCC PV-109 (GenBank accession no. GQ845002.2), with a nucleotide identity of 86.7%. The virus encodes four open reading frames (ORF) coding for four proteins, and phylogenetic analysis of capsid protein and RNA-dependent RNA polymerase (RdRp) showed that the strain was clustered into the species Sowbane Mosaic Virus (SoMV). The amino acid sequence identity of capsid protein was 89.6-90.9% to other isolates of SoMV, but 17.6-31.4% similar to other strains in the genus Sobemovirus, indicating a strain of Sowbane Mosaic Virus. This is the first report of SoMV in the feces of wild birds and in China, and it suggested that northern pintail likely plays an alternative role in the transmission of SoMV.


Assuntos
Proteínas do Capsídeo , Vírus de RNA , Animais , Proteínas do Capsídeo/genética , Filogenia , Patos , Vírus de RNA/genética , Fezes , Genoma Viral/genética , Fases de Leitura Aberta
9.
J Chem Neuroanat ; 132: 102319, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495162

RESUMO

OBJECTIVE: This study aimed to confirm that G protein-coupled estrogen receptor 1 (GPER1) deficiency affects cognitive function by reducing hippocampal neurogenesis via the PKA/ERK/IGF-I signaling pathway in mice with schizophrenia (SZ). METHODS: Mice were divided into four groups, namely, KO Con, WT Con, KO Con, and WT SZ (n = 12 in each group). All mice were accustomed to the behavioral equipment overnight in the testing service room. The experimental conditions were consistent with those in the animal house. Forced swimming test and Y-maze test were conducted. Neuronal differentiation and maturation were detected using immunofluorescence and confocal imaging. The protein in the PKA/ERK/IGF-I signaling pathway was tested using Western blot analysis. RESULTS: GPER1 KO aggravated depression during forced swimming test and decreased cognitive ability during Y-maze test in the mouse model of dizocilpine maleate (MK-801)-induced SZ. Immunofluorescence and confocal imaging results demonstrated that GPER1 knockout reduced adult hippocampal dentate gyrus neurogenesis. Furthermore, GPER1-KO aggravated the hippocampal damage induced by MK-801 in mice through the PKA/ERK/IGF-I signaling pathway. CONCLUSIONS: GPER1 deficiency reduced adult hippocampal neurogenesis and neuron survival by regulating the PKA/ERK/IGF-I signaling pathway in the MK-801-induced mouse model of SZ.


Assuntos
Receptor alfa de Estrogênio , Hipocampo , Neurogênese , Esquizofrenia , Animais , Camundongos , Maleato de Dizocilpina/metabolismo , Maleato de Dizocilpina/farmacologia , Receptor alfa de Estrogênio/genética , Proteínas de Ligação ao GTP/metabolismo , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Esquizofrenia/genética
10.
J Comput Chem ; 44(21): 1776-1785, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37133985

RESUMO

A nonionizing ultrafast laser pulse of 20-fs duration with a peak amplitude electric-field ±E = 200 × 10-4 a.u. was simulated. It was applied to the ethene molecule to consider its effect on the electron dynamics, both during the application of the laser pulse and for up to 100 fs after the pulse was switched off. Four laser pulse frequencies ω = 0.2692, 0.2808, 0.2830, and 0.2900 a.u. were chosen to correspond to excitation energies mid-way between the (S1 ,S2 ), (S2 ,S3 ), (S3 ,S4 ) and (S4 ,S5 ) electronic states, respectively. Scalar quantum theory of atoms in molecules (QTAIM) was used to quantify the shifts of the C1C2 bond critical points (BCPs). Depending on the frequencies ω selected, the C1C2 BCP shifts were up to 5.8 times higher after the pulse was switched off compared with a static E-field with the same magnitude. Next generation QTAIM (NG-QTAIM) was used to visualize and quantify the directional chemical character. In particular, polarization effects and bond strengths, in the form of bond-rigidity vs. bond-flexibility, were found, for some laser pulse frequencies, to increase after the laser pulse was switched off. Our analysis demonstrates that NG-QTAIM, in partnership with ultrafast laser irradiation, is useful as a tool in the emerging field of ultrafast electron dynamics, which will be essential for the design, and control of molecular electronic devices.

11.
Curr Med Sci ; 43(3): 478-488, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37243806

RESUMO

OBJECTIVE: We previously reported that mutations in inner mitochondrial membrane peptidase 2-like (Immp2l) increase infarct volume, enhance superoxide production, and suppress mitochondrial respiration after transient cerebral focal ischemia and reperfusion injury. The present study investigated the impact of heterozygous Immp2l mutation on mitochondria function after ischemia and reperfusion injury in mice. METHODS: Mice were subjected to middle cerebral artery occlusion for 1 h followed by 0, 1, 5, and 24 h of reperfusion. The effects of Immp2l+/- on mitochondrial membrane potential, mitochondrial respiratory complex III activity, caspase-3, and apoptosis-inducing factor (AIF) translocation were examined. RESULTS: Immp2l+/- increased ischemic brain damage and the number of TUNEL-positive cells compared with wild-type mice. Immp2l+/- led to mitochondrial damage, mitochondrial membrane potential depolarization, mitochondrial respiratory complex III activity suppression, caspase-3 activation, and AIF nuclear translocation. CONCLUSION: The adverse impact of Immp2l+/- on the brain after ischemia and reperfusion might be related to mitochondrial damage that involves depolarization of the mitochondrial membrane potential, inhibition of the mitochondrial respiratory complex III, and activation of mitochondria-mediated cell death pathways. These results suggest that patients with stroke carrying Immp2l+/- might have worse and more severe infarcts, followed by a worse prognosis than those without Immp2l mutations.


Assuntos
Ataque Isquêmico Transitório , Traumatismo por Reperfusão , Animais , Camundongos , Caspase 3/genética , Caspase 3/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Ataque Isquêmico Transitório/metabolismo , Membranas Mitocondriais/metabolismo , Mutação , Traumatismo por Reperfusão/metabolismo
12.
Exp Ther Med ; 25(5): 228, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37114179

RESUMO

We previously demonstrated that a transforming growth factor ß type II receptor (TGFBR2) mutation can predict resistance to immune checkpoint inhibitors (ICIs) in patients with advanced non-small cell lung cancer (NSCLC), based on publicly available immunotherapeutic cohorts. However, the efficacy of ICI-based regimens in patients with advanced NSCLC harboring TGFBR2 mutations in the real-world setting is rarely reported. The present study describes the case of a patient with advanced NSCLC who harbors a TGFBR2 mutation. The patient was treated with ICI monotherapy and experienced hyperprogressive disease (HPD). The clinical information was retrospectively collected. The progression-free survival (PFS) was only 1.3 months. In conclusion, HPD occurred in a patient with advanced NSCLC with a TGFBR2 mutation who received an ICI monotherapy regimen. The findings suggested that caution may be required regarding the clinical delivery of ICI monotherapy to patients with NSCLC and TGFBR2 mutations; ICIs combined with chemotherapy may be an alternative treatment option.

13.
Front Oncol ; 13: 1085188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051536

RESUMO

Introduction: Hepatocellular carcinoma (HCC) is one of the most invasive cancers with a low 5-year survival rate. Pyroptosis, a specialized form of cell death, has shown its association with cancer progression. However, its role in the prognosis of HCC has not been fully understood. Methods: In our study, clinical information and mRNA expression for 1076 patients with HCC were obtained from the five public cohorts. Pyroptotic clusters were generated by unsupervised clustering based on 40 pyroptosis-related genes (PRGs) in the TCGA and ICGC cohort. A pyroptosis-related signature was constructed using least absolute shrinkage and selection operator (LASSO) regression according to differentially expressed genes (DEGs) of pyroptotic clusters. The signature was then tested in the validation cohorts (GES10142 and GSE14520) and subsequently validated in the CPTAC cohort (n=159) at both mRNA and protein levels. Response to sorafenib was explored in GSE109211. Results: Three clusters were identified based on the 40 PRGs in the TCGA cohort. A total of 24 genes were selected based on DEGs of the above three pyroptotic clusters to construct the pyroptotic risk score. Patients with the high-risk score showed shorter overall survival (OS) compared to those with the low-risk score in the training set (P<0.001; HR, 3.06; 95% CI, 2.22-4.24) and the test set (P=0.008; HR, 1.61; 95% CI, 1.13-2.28). The predictive ability of the risk score was further confirmed in the CPTAC cohort at both mRNAs (P<0.001; HR, 2.99; 95% CI, 1.67-5.36) and protein levels (P<0.001; HR, 2.97; 95% CI 1.66-5.31). The expression of the model genes was correlated with immune cell infiltration, angiogenesis-related genes, and sensitivity to antiangiogenic therapy (P<0.05). Discussion: In conclusion, we established a prognostic signature of 24 genes based on pyroptosis clusters for HCC patients, providing insight into the risk stratification of HCC.

14.
ACS Omega ; 7(47): 42723-42732, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467957

RESUMO

Silymarin exhibits an anti-inflammatory property in various cancers and inflammatory diseases. In our previous work, silymarin-mediated selenium nanoparticles (SeNPs) (Si-SeNPs) were developed using a green synthesis technique, and its potential as an anticancer agent was confirmed. In order to further examine the extended comprehensive potential of Si-SeNPs, this investigation focuses on studying the enhanced anti-inflammatory effect of Si-SeNPs in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction were used to evaluate the expression of pro-inflammatory mediators and cytokines. Western blotting and immunofluorescence assays were conducted to assess the protein expression of p-PI3K, p-Akt, p-NF-κB, and p-IκBα. Compared to silymarin, Si-SeNPs exhibited a significantly increased inhibitory effect on LPS-induced release of nitric oxide and the expression of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin 1ß (IL-1ß) in RAW264.7 cells. A western blot assay indicated that Si-SeNPs downregulated the PI3K/Akt and NF-κB signaling pathways. The immunofluorescence assay suggested that Si-SeNPs inhibited the nuclear translocation and the activation of NF-κB. In addition, 740 Y-P (PI3K agonist) was used to demonstrate that activating the PI3K/Akt signal could partially reverse the inflammatory response, suggesting a causal role of the PI3K/Akt signaling pathway in the anti-inflammatory effect of Si-SeNPs. Consequently, these findings indicate that Si-SeNPs could be a functional agent of the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages through inhibiting the PI3K/Akt/NF-κB signaling pathway. In addition, biosynthesized Si-SeNPs could be more effective at reducing inflammation than only silymarin extracts. Thus, this study lays an experimental foundation for the clinical application of using biosynthesized SeNPs as a novel candidate in the field of inflammation-associated diseases.

15.
Front Cardiovasc Med ; 9: 947721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330017

RESUMO

Background: Cardiovascular disease, including acute myocardial infarction (AMI), is a major global cause of mortality and morbidity. Specificity and sensitivity limit the utility of classic diagnostic biomarkers for AMI. Therefore, it is critical to identify novel biomarkers for its accurate diagnosis. Cumulative studies have demonstrated that circulating microRNAs (miRs) participate in the pathophysiological processes of AMI and are promising diagnostic biomarkers for the condition. This study aimed to ascertain the diagnostic accuracy of circulating miR-21-5p and miR-126 used as biomarkers in patients with AMI and infarct-related artery total occlusion (IR-ATO) or infarct-related blood-vessel recanalization (IR-BVR). Methods: The expression of miR-21-5p and miR-126 was examined separately in 50 healthy subjects, 51 patients with IR-ATO AMI, and 49 patients with IR-BVR AMI using quantitative real-time polymerase chain reaction. Results: When compared with the control group, the IR-ATO AMI group exhibited increased miR-21-5p (p < 0.0001) and miR-126 (p < 0.0001), and the IR-BVR AMI group exhibited increased miR-21-5p (p < 0.0001). However, there was no significant difference in miR-126 between the IR-BVR AMI and the control groups. A Spearman's correlation coefficient showed a strong correlation was found between miR-21-5p, miR-126, cardiac troponin-I, and creatine kinase isoenzyme in all three groups, while a receiver operating characteristic analysis revealed that miR-21-5p and miR-126 exhibited considerable diagnostic accuracy for IR-ATO AMI. Conclusion: Circulating miR-21-5p and miR-126 may be promising prognostic biomarkers for patients with AMI and IR-ATO.

16.
Int J Biol Sci ; 18(15): 5809-5826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263176

RESUMO

Plant extract-mediated synthesis of metal nanoparticles (NPs) is an eco-friendly and cost-effective biosynthesis method that is more suitable for biological applications than chemical ones. We prepared novel gold NPs (AuNPs), Cirsium japonicum mediated-AuNPs (CJ-AuNPs), using a biosynthetic process involving Cirsium japonicum (Herba Cirsii, CJ) ethanol extract. The physicochemical properties of CJ-AuNPs were characterized using spectrometric and microscopic analyses. The in vitro stability of CJ-AuNPs was studied for 3 months. Moreover, the selective human gastric adenocarcinoma (AGS) cell killing ability of CJ-AuNPs was verified in cancer and normal cells. An in vitro study revealed that CJ-AuNPs trigger oxidative stress and iron-dependent ferroptosis in AGS cells. Mechanistically, CJ-AuNPs induced mitochondrial reactive oxygen species (ROS), Fe2+, and lipid peroxidation accumulation, and mitochondrial damage by destroying the glutathione peroxidase-4 (GPX4)-dependent antioxidant capacity. Furthermore, in a xenograft mouse model implanted with AGS cells, treatment with 2.5, 5, and 10 mg/kg CJ-AuNPs for 16 days reduced tumor xenograft growth in a dose dependent manner in vivo without systemic toxicity. These results demonstrate that CJ-AuNPs exert anticancer effects in vitro and in vivo by inducing ferroptosis-mediated cancer cell death. This study, based on green-synthesized nanodrug-induced ferroptosis, provides new insight into potential developments in cancer therapies.


Assuntos
Cirsium , Nanopartículas Metálicas , Neoplasias Gástricas , Humanos , Camundongos , Animais , Cirsium/química , Cirsium/metabolismo , Ouro/química , Ouro/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Antioxidantes/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Glutationa Peroxidase , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Etanol , Ferro
17.
ACS Omega ; 7(42): 37401-37409, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312396

RESUMO

Although naturally occurring flavonoids have shown beneficial effects on the side effects caused by cisplatin, there are few reports on the protective effect of dihydrochalcone on the cisplatin-induced toxicity. Trilobatin (TLB), as the major sweetener and active ingredient in Lithocarpus polystachyus Rehd, is a dihydrochalcone-like compound that can be present in concentrations of up to 10% or more in tender leaves. Herein, a cisplatin-induced acute kidney injury (AKI) model was established to investigate the protective effect and mechanism of TLB against the cisplatin-induced nephrotoxicity in mice. The results showed that TLB significantly reversed the inhibition of CRE, BUN, and MDA levels compared with the cisplatin group. Furthermore, TLB treatment (50 and 100 mg/kg) for 10 days significantly alleviated cisplatin-induced renal pathological changes. TUNEL staining showed that TLB administration can effectively improve the occurrence of apoptosis of renal tissue cells caused by cisplatin exposure. Importantly, western blot analysis verified that TLB alleviated cisplatin-induced nephrotoxicity by regulating the AKT/MAPK signaling pathway and apoptosis. In summary, our findings showed clearly that TLB has a significant preventive effect on cisplatin-induced AKI.

18.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080252

RESUMO

Dihydromyricetin (DHM) has garnered attention due to its promising antitumor activity, but its low bioavailability restricts its clinical application. Thus, developing nano-drug delivery systems could enhance its antitumor activity. We prepared DHM@ZIF-8 nanoparticles using the zeolite imidazole framework-8 (ZIF-8) as a carrier loaded with dihydromyricetin. A series of characterizations were performed, including morphology, particle size, zeta potential, X-single crystal diffraction, ultraviolet spectroscopy, infrared spectroscopy, and Brunauer-Emmett-Teller (BET). The in vitro release characteristics of DHM@ZIF-8 under pH = 5.0 and pH = 7.4 were studied using membrane dialysis. The antitumor activity and pro-apoptotic mechanism of DHM@ZIF-8 were investigated through CCK-8 assay, reactive oxygen species (ROS), Annexin V/PI double-staining, transmission electron microscopy, and Western blot. The results depicted that DHM@ZIF-8 possessed a regular morphology with a particle size of 211.07 ± 9.65 nm (PDI: 0.19 ± 0.06) and a Zeta potential of -28.77 ± 0.67 mV. The 24 h drug releasing rate in PBS solution at pH = 7.4 was 32.08% and at pH = 5.0 was 85.52% in a simulated tumor micro acid environment. DHM@ZIF-8 could significantly enhance the killing effect on HepG2 cells compared to the prodrug. It can effectively remove ROS from the tumor cells, promote apoptosis, and significantly affect the expression of apoptosis-related proteins within tumor cells.


Assuntos
Zeolitas , Flavonóis , Células Hep G2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Diálise Renal , Zeolitas/química , Zeolitas/farmacologia
19.
Toxics ; 10(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36136471

RESUMO

The mature landfill leachate (MLL) is characterized by a large number of fulvic acids and humic acids, which is refractory organic matter and can be cleaned by ozone oxidation. However, the poor property of mass transfer prohibits the widespread use of ozone oxidation in actual leachate treatment. Meanwhile, some combined processes are adopted to treat the mature landfill leachate, which places catalytic ozonation before the membrane bioreactor (MBR) process to enhance the biodegradability of MLL. Thus, this research is conducted to investigate the practicability of applying nano-Fe3O4 loaded cow-dung ash (Fe3O4@CDA) and biological post-treatment with MBR for the effective removal of pollutants from MLL and puts forward the variation of organics in leachate between catalytic ozonation and MBR. The addition of catalytic ozonation not only improved the removal of hazardous organics but also enhanced the biodegradability of the leachate and favored the subsequent MBR process. Chemical oxygen demand (COD) removal in the catalytic ozonation step was optimized, and 53% removal was obtained at pH = 7, catalyst dosage = 1.0 g/L, and O3 dosage = 3.0 g/L. After the MBR process, COD in effluent stabilized in the range of 57.85-65.38 mg/L, and the variation range of the ammonia nitrogen (NH3-N) concentration was 5.98-10.24 mg/L. The catalytic ozonation-MBR integrated process showed strong feasibility in dealing with the biologically pre-treated leachate.

20.
Front Vet Sci ; 9: 846634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812856

RESUMO

Visna/Maedi virus (VMV) is a neglected pathogen that damages sheep and goats' nervous and respiratory systems. The virus was discovered 80 years ago and has been endemic in China for nearly four decades; nevertheless, there is little information regarding Chinese isolates' genotypes and genomic characteristics. In this study, the proviral DNA of strains isolated in 1985 and 1994 were extracted, and the proviral DNA was subjected to Illumina sequencing combined with Sanger sequencing of poor coverage regions. The results showed that the two isolates were clustered with genotype A2 and shared 78.3%-89.1% similarity to reference VMV genome sequences, with the highest similarity (88.7%-89.1%) to the USA strain USMARC-200212120-r (accession no. MT993908.1) and lowest similarity (78.3%-78.5%) to the Italian strain SRLV009 (accession no. MG554409.1). A maximum-likelihood tree showed that the Chinese VMV strains and the USA strain 1150 (accession no. MH916859.1) comprise a monophyletic group with a short tree branch. Our data filled the gap in genomic analysis and viral evolution in Chinese VMV strains, and would be benefit China's source-tracing and eradication program development in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA