Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400487, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807568

RESUMO

Effective fractionation of lignocelluosic biomass and subsequent valorization of all three major components under mild conditions were achieved. Pretreatment with acidified monophasic phenoxyethanol (EPH) efficiently removed 92.6 % lignin and 80 % xylan from poplar at 110 °C in 60 min, yielding high-value EPH-xyloside, EPH-modified lignin (EPHL), and a solid residue nearly purely composed of carbohydrates. After removing the grafted acetyl groups using 1 % NaOH at 50 °C, the highest enzymatic digestibility reached 92.3 %. EPHL could be recovered in high yield and purity with an uncondensed structure, while xylose was converted to EPH-xyloside, a potential precursor in biomedical industries. Additionally, the acidified monophasic EPH solvent could effectively fractionate biomass from species other than hardwood, achieving over 70 % delignification from recalcitrant pinewood under the same mild conditions, demonstrating the high potential of monophasic EPH pretreatment.

2.
Bioresour Technol ; 348: 126769, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35092821

RESUMO

Exploiting highly active and methanol-resistant lipase is of great significance for biodiesel production. A semi-rational directed evolution method combined with N-glycosylation is reported, and all mutants exhibiting higher catalytic activity and methanol tolerance than the wild type (WT). Mutant N267 retained 64% activity after incubation in 50% methanol for 8 h, which was 48% greater than that of WT. The catalytic activity of mutants N267 and N167 was 30- and 71- fold higher than that of WT. Molecular dynamics simulations of N267 showed that the formation of new strong hydrogen bonds between glycan and the protein stabilized the structure of lipase and improved its methanol tolerance. N267 achieved biodiesel yields of 99.33% (colza oil) and 81.70% (waste soybean oil) for 24 h, which was much higher than WT (51.6% for rapeseed oil and 44.73% for wasted soybean oil). The engineered ProRML mutant has high potential for commercial biodiesel production.


Assuntos
Biocombustíveis , Lipase , Lipase/metabolismo , Metanol/química , Rhizomucor/metabolismo
3.
Biotechnol Biofuels ; 14(1): 237, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911574

RESUMO

BACKGROUND: Liquid lipases are widely used to convert oil into biodiesel. Methanol-resistant lipases with high catalytic activity are the first choice for practical production. Rhizomucor miehei lipase (RML) is a single-chain α/ß-type protein that is widely used in biodiesel preparation. Improving the catalytic activity and methanol tolerance of RML is necessary to realise the industrial production of biodiesel. RESULTS: In this study, a semi-rational design method was used to optimise the catalytic activity and methanol tolerance of ProRML. After N-glycosylation modification of the α-helix of the mature peptide in ProRML, the resulting mutants N218, N93, N115, N260, and N183 increased enzyme activity by 66.81, 13.54, 10.33, 3.69, and 2.39 times than that of WT, respectively. The residual activities of N218 and N260 were 88.78% and 86.08% after incubation in 50% methanol for 2.5 h, respectively. In addition, the biodiesel yield of all mutants was improved when methanol was added once and reacted for 24 h with colza oil as the raw material. N260 and N218 increased the biodiesel yield from 9.49% to 88.75% and 90.46%, respectively. CONCLUSIONS: These results indicate that optimising N-glycosylation modification in the α-helix structure is an effective strategy for improving the performance of ProRML. This study provides an effective approach to improve the design of the enzyme and the properties of lipase mutants, thereby rendering them suitable for industrial biomass conversion.

4.
Bioresour Technol ; 342: 125963, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34852441

RESUMO

A novel ternary solvent system for organosolv fractionation of lignocellulosic biomass, named APW process, which is composed of acetone, phenoxyethanol and water with the advantages of monophasic deconstruction and biphasic separation of components was developed. Through fractionation of amorpha as a case study, a monophasic APW solution (acetone/phenoxyethanol/water = 5:11:4, volume ratio) with the best lignin affinity was constructed based on Hansen solubility parameters. According to Taguchi experimental design, the optimal conditions were 130 °C, 70 min, 0.15 M sulfuric acid and 20 LSR. Under optimal conditions, removal of lignin and hemicellulose reached 95.60% and 98.39%, respectively. While 80.48% of cellulose was retained in residue and its digestibility was 80.36%. Then, 83.74% of hemicellulose was recovered from aqueous as sugars, and 35.64% of lignin was recovered by precipitation. Moreover, APW process also have effective fractionation of sugarcane bagasse, corn cob and pine, cellulose and hemicellulose recovery were both over 80%.


Assuntos
Acetona , Água , Biomassa , Fracionamento Químico , Etilenoglicóis , Hidrólise , Lignina , Solventes
5.
Enzyme Microb Technol ; 150: 109870, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489029

RESUMO

The propeptide is a short sequence that facilitates protein folding. In this study, four highly active Rhizomucor miehei lipase (RML) mutants were obtained through saturation mutagenesis at three propeptide positions: Ser8, Pro35, and Pro47. The enzyme activities of mutants P35 N, P47 G, P47 N, and S8E/P35S/P47A observed at 40 °C, and pH 8.0 were 10.19, 7.53, 6.15, and 8.24 times of that wild-type RML, respectively. The S8E/P35S/P47A mutant showed good thermostability. After incubation at 40 °C for 1 h, 98.98 % of its initial activity remained, whereas wild-type RML retained only 78.76 %. This result indicated that the enhancement of hydrophilicity of 35- and 47- amino-acid residues could promote the interaction between the propeptide and the mature peptide and the enzyme activity and expression level. Highly conserved sites had a more significant impact on enzyme performance than did other sites, similar to the Pro35 and Pro47 mutants showed in this study. This study provides a new idea for protein modification: enzyme performance can be improved through propeptide regulation.


Assuntos
Lipase , Rhizomucor , Lipase/genética , Lipase/metabolismo , Mutação , Dobramento de Proteína , Rhizomucor/genética
6.
Water Sci Technol ; 79(11): 2046-2055, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31318342

RESUMO

The purpose of this study was to optimize the coagulation-flocculation effect of a wastewater treatment system using the response surface methodology (RSM) and three-step method to minimize phosphorus concentration in the distillate wastewater. In order to minimize the concentration of total phosphorus (TP), experiments were carried out using 33-factorial designs with three levels and three factors. A Box-Behnken design, which is the standard design of RSM, was used to evaluate the effects and interactions of three major factors (Fe:P (w/w) ratio, coagulation pH and fast mixing speed (FMS)) on the treatment efficiency. A multivariable quadratic model developed for studying the response indicated that the values for optimum conditions for Fe:P (w/w) ratio, coagulation pH and FMS were 2.40, 6.48 and 100 rev min-1, respectively. Under optimal process conditions, the TP concentration in the distillery effluent was reduced from 10 mg L-1 to 0.215 mg L-1, representing a removal efficiency of 97.85%. Based upon the statistical evaluation of results, it is inferred that RSM can be used as an appropriate approach to optimize the coag-flocculation process. Meanwhile, the study has shown that, for the equivalent dose of ferric chloride, the average three-step effect is better than that of the one-time addition.


Assuntos
Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Cloretos/química , Compostos Férricos/química , Floculação , Fósforo/química
7.
RSC Adv ; 9(59): 34457-34464, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-35529960

RESUMO

In this article, a novel nano-rod-shaped SAPO-11 molecular sieve (SAPO-11-A-F) with a thickness of ca. 100 nm was successfully fabricated by the in situ seed-induced steam-assisted method using the cationic surfactant cetyltrimethylammonium bromide (CTAB) as a mesoporous template and a nonionic copolymer poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), F127, as the crystal growth inhibitor. The fabricated nano-rod-shaped SAPO-11-A-F possessed nanocrystalline size, a hierarchical porous structure, and enhanced acidic sites. The added CTAB was mainly used to enhance the mesoporous structure and acid, and F127 acted as a grain growth inhibitor. According to the orientation growth mechanism of the molecular sieves, the crystallization mechanism of the nano-rod-shaped hierarchical porous molecular sieves with different crystallization times was investigated. It was found that the nano-rod-shaped molecular sieves were formed by the accumulation of nano-sheets. Compared to three nickel catalysts with different silicoaluminophosphate SAPO-11 molecular sieves in the hydroisomerization of oleic acid to iso-alkanes, the bifunctional catalyst of 7% Ni/SAPO-11-A-F had higher isomeric selectivity (79.8%); in particular, the isomeric octadecane showed stronger selectivity, indicating that the nano-rod-shaped SAPO-11 molecular sieve is more beneficial for the hydrodehydration reaction.

8.
RSC Adv ; 9(51): 29665-29675, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35531534

RESUMO

In this work, porous cross-linked enzyme aggregates (p-CLEAs) were synthesized by the in situ co-precipitation method using CaCO3 microparticles as templates. The preparation procedure involved the immobilization of crude lipase as CLEAs via precipitation with ammonium sulfate and entrapping these lipase molecules into the CaCO3 templates, followed by DTT (dithiothreitol)-induced assembly of lipase molecules to form lipase microparticles (lipase molecules were assembled into microparticles internally using disulfide bonds within the lipase molecules as the molecular linkers and stimulated by dithiothreitol); finally, the removal of CaCO3 templates was performed by EDTA to form pores in CLEAs. The scanning electron microscopy analysis of p-CLEAs showed a porous structure. p-CLEAs showed obvious improvement in thermal stability (after incubation at 65 °C, p-CLEAs lipase retained 86% relative activity, while free lipase retained only 33.67%) and pH stability (p-CLEAs relative activity was over 90% while for free lipase, the relative activity ranged from 72% to 89% from pH 6 to 9) than free lipase and could hold relatively high activity retention without activity loss at 4 °C for more than six months. The application of p-CLEAs in producing biodiesel showed a higher degree of conversion. The conversion of fatty acid methyl ester (FAME) was 89.7%; this value was higher by approximately 7.4% compared to that of the conventional CLEAs under the optimized conditions of a methanol-oil molar ratio of 6 : 1, with a p-CLEAs lipase dose of 20% and water content of 3% at 45 °C for 24 h. The FAME conversion remained greater than 70% even after reusing the p-CLEAs lipase for 8 reactions. The results demonstrated that the p-CLEAs lipase is suitable for applications in the preparation of biodiesel.

9.
Nanoscale Res Lett ; 13(1): 178, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29900488

RESUMO

Advanced core-shelled material with a high specific area has been considered as an effective material to remove heavy metal from aqueous solutions. A core-shelled Fe3O4@C hybrid nanoparticle aggregates with environmental-friendly channel in the study. Moreover, the higher exposure of adsorption sites can be achieved for the special configuration that higher Brunauer-Emmet-Teller (BET) surface area reaches up to 238.18 m2 g-1. Thus, a more efficiently heavy metal ion removal is obtained, Pb (II), Cd (II), Cu (II), and Cr (VI) up to 100, 99.2, 96.6, and 94.8%, respectively. In addition, the products are easy to be separated from the aqueous solutions after adsorption, due to the relative large submicrometer size and the enhanced external magnetic fields introduced by the iron-based cores. We provide an ideal mode to remove heavy metal ions using core-shelled Fe3O4@C under the water treatment condition. A new approach is clarified that core-shell nano/micro-functional materials can be synthesized well on large scales which are used in many fields such as environmental remediation, catalyst, and energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA