Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0293829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37983275

RESUMO

To investigate the distribution characteristics of spontaneous combustion disaster (SCD) zones in the goaf of "110" mining method with U + L ventilation system and formulate corresponding fire prevention measures, enclosed coal oxidation experiments were carried out to measure the oxidation characteristics of Dongrong Coal Mine bituminous coal sample. A coupled 3DEC-CFD (3 dimensional Distinct Element Code) model was established. The 3D transient distribution characteristics of SCD zones in the "110" mining goaf under U+L ventilation condition were analyzed. Nitrogen injection in the tailgate was proposed for coal spontaneous combustion prevention. The results show that air leakage changed the distribution of oxygen and temperature fields in the "110" goaf, causing the region 20~60 m parallel to the retained roadway to remain in the oxidation zone for spontaneous combustion. As the working face advanced, the area change curve of SCD zones in the "110" goaf exhibited a "double inflection point" pattern. Eliminating the "retained roadway oxidation zone" can effectively reduce the spontaneous combustion risks in the "110" goaf and ensure mining safety. This study enriches the mechanisms of coal spontaneous combustion.


Assuntos
Minas de Carvão , Combustão Espontânea , Temperatura , Minas de Carvão/métodos , Carvão Mineral , Oxirredução
2.
Sci Rep ; 13(1): 3683, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878994

RESUMO

To explore the wind flow turbulence and smoke flow diffusion law during the mine downward ventilation fire, two similar experimental platforms of a inclined single pipe test device and a loop system multiple pipe test device were built. The change data of the air flow in the pipeline during the fire period under different air volumes were measured. The evolution process of downward ventilation fire in the whole roadway network domain in Dayan Mine was simulated, and the emergency plan was put forward. The results show that in the experiment, the combustion intensity of the fire source is positively correlated with the ventilation power, and the fire wind pressure increases with the increase of the inclination angle of the pipeline. The throttling effect of the fire area and the combustion of the fire source together make the air volume in the pipeline change rapidly. The critical wind speed that makes the downward ventilation flow fire wind pressure equal to the fan power is 1.8 m s-1. The stronger the fan capacity, the stronger the ability of the main air path to overcome the resistance of the fire zone and maintain the original state. In the simulation, the most dangerous place when the downward ventilation fire smoke is reversed is the area (weak flow area) in the mine tunnel network where the ventilation power is weaker than the fire wind power. This study can provide a theoretical basis for the formulation of emergency plans for mine fire accidents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA