RESUMO
The recovery of valuable gold from wastewater is of great interest because of the widespread use of the precious metal in various fields and the pollution generated by gold-containing wastes in water. In this paper, a water-insoluble cross-linked adsorbent material (TE) based on cyanuric chloride (TCT) and ethylenediamine (EDA) was designed and used for the adsorption of Au(III) from wastewater. It was found that TE showed extremely high selectivity (D = 49,213.46) and adsorption capacity (256.19 mg/g) for Au(III) under acidic conditions. The adsorption rate remained above 90% eVen after five adsorption-desorption cycles. The adsorption process followed the pseudo-first-order kinetic model and the Freundlich isotherm model, suggesting that physical adsorption with a multilayer molecular overlay dominates. Meanwhile, the adsorption mechanism was obtained by DFT calculation and XPS analysis, and the adsorption mechanism was mainly the electrostatic interaction and electron transfer between the protonated N atoms in the adsorbent (TE) and AuCl4-, which resulted in the redox reaction. The whole adsorption process was the result of the simultaneous action of physical and chemical adsorption. In conclusion, the adsorbent material TE shows great potential for gold adsorption and recovery.
RESUMO
Chinese brake fern (Pteris vittata) can increase tolerance to arsenic (As) and cadmium (Cd) toxicity by regulating rhizosphere microbial diversity. However, effects of combined As-Cd stress on microbial diversity and plant uptake and transport remain poorly understood. Therefore, effects of different concentrations of As and Cd on Pteris vittata (P. vittata) metal uptake and translocation and rhizosphere microbial diversity were examined in a pot experiment. The results indicated that As primarily accumulated aboveground in P. vittata (bioconcentration factor (BCF) ≤ 51.3; translocation factor (TF) ≈ 4), whereas Cd primarily accumulated belowground (BCF ≤ 39.1; TF < 1). Under single As, single Cd, and As-Cd combined stress, the most dominant bacteria and fungi were Burkholderia-Caballeronia-P (6.62-27.92%) and Boeremia (4.61-30.42%), Massilia (8.07-11.51%) and Trichoderma (4.47-22.20%), and Bradyrhizobium (2.24-10.38%) and Boeremia (3.16-45.69%), respectively, and their abundance ratios had a significant impact on the efficiency of P. vittata for As and Cd accumulation. However, with increasing As and Cd concentrations, abundances of plant pathogenic bacteria such as Fusarium and Chaetomium (the highest abundances were 18.08% and 23.72%, respectively) increased, indicating that As and Cd concentrations reduced P. vittata resistance to pathogens. At high soil concentrations of As-Cd, although plant As and Cd contents increased and microbial diversity was highest, enrichment efficiency and transportability of As and Cd decreased substantially. Therefore, pollution intensity should be considered when evaluating P. vittata suitability for phytoremediation of combined As-Cd contaminated soils.
Assuntos
Arsênio , Cádmio , Metais , Pteris , Poluentes do Solo , Arsênio/análise , Arsênio/metabolismo , Biodegradação Ambiental , Cádmio/análise , Cádmio/metabolismo , Metais/análise , Metais/metabolismo , Pteris/química , Pteris/metabolismo , Rizosfera , Poluentes do Solo/análise , Poluentes do Solo/metabolismoRESUMO
Three novel chalcones bearing a long-chain alkylphenol, galanganones A-C (1-3), were isolated from the rhizomes of Alpinia galanga. Their structures were elucidated by extensive spectroscopic analysis including 2D NMR experiments. Compounds 1-3 represent the first examples of long-chain alkylphenol-coupled chalcone.