Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioresour Technol ; 393: 130055, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995871

RESUMO

This study investigated the use of H2-driven CO2 biomethanation for integrated CO2 capture and conversion (iCCC). Anaerobic chambers containing Na2CO3-amended microbial growth medium provided with H2 were inoculated with anaerobic granular sludge. Microorganisms were enriched that could regenerate carbonate by using the bicarbonate formed from CO2 absorption to generate methane. Multiple absorption-regeneration cycles were performed and effective restoration of CO2 absorption capacity and stable carbonate recycling via CO2 biomethanation were observed for CO2 absorbents adjusted to three different pH values (9.0, 9.5, and 10.0). The pH = 10.0 group had the highest CO2 absorption capacity; 65.3 mmol/L in the 5th cycle. A slight alkaline inhibition of acetoclastic methanogenesis occurred near the end of regeneration, but had limited impact on the cyclic performance of the iCCC process. Microbial communities were dominated by H2-utilizing and alkali-tolerant species that could participate in CO2 biomethanation and survive under alternating neutral and alkaline conditions.


Assuntos
Dióxido de Carbono , Microbiota , Reatores Biológicos , Esgotos , Anaerobiose , Metano/química , Carbonatos
2.
Sci Total Environ ; 912: 169196, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38097075

RESUMO

The safety of drinking water has always been a concern for people all over the world. N-nitrosamines (NAs), a kind of nitrogenous disinfection by-products (N-DBPs), are generally detected as a mixture in drinking water at home and abroad. Studies have shown that individual NAs posed strong carcinogenicity at high concentrations. However, health risks of NAs at environmental levels (concentrations in drinking water) are still unclear. Therefore, the potential health risks of environmentally relevant NAs exposure in drinking water needs to be conducted. In this study, blood biochemical analysis and metabolomics based on nuclear magnetic resonance (NMR) were performed to comprehensively investigate NAs induced metabolic disturbance in infant rats at environmental levels. Results of blood biochemical indices analysis indicated that AST in the serum of male rats in NAs-treated group exhibited a significant gender-specific difference. Multivariate statistics showed that two and eight significantly disturbed metabolic pathways were identified in the serum samples of NAs-treated male and female rats, respectively. In the urine samples of NAs-treated female rats, glycine, serine, and threonine metabolism pathway was significantly disturbed; while three significantly disturbed metabolic pathways were found in the urine of NAs-treated male rats. Finally, results of spearman correlation coefficients suggested that the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota (data derived from our published paper). Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management. ENVIRONMENTAL IMPLICATION: N-nitrosamines (NAs) are a kind of nitrogenous disinfection by-products (N-DBPs) generated during drinking water disinfection processes. Herein, health risks of NAs at environmental levels (concentrations in drinking water) are investigated using blood biochemical analysis and nuclear magnetic resonance (NMR)-based metabolomics. Results confirmed NAs induced gender-specific on the metabolism in rat and the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota. Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management.


Assuntos
Desinfetantes , Água Potável , Nitrosaminas , Poluentes Químicos da Água , Purificação da Água , Humanos , Lactente , Ratos , Masculino , Feminino , Animais , Nitrosaminas/toxicidade , Nitrosaminas/análise , Água Potável/química , Purificação da Água/métodos , Desinfecção/métodos , Espectroscopia de Ressonância Magnética , Poluentes Químicos da Água/análise , Desinfetantes/análise
3.
Sci Total Environ ; 899: 165697, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482356

RESUMO

The emergence of resistance to existing succinate dehydrogenase inhibitor fungicides (SDHIs) calls for the urgent innovation of novel formulations, but also results in an increase information gap on the ecological risks of novel SDHIs especially to non-target organisms. Herein, the environmental behavior and toxicological effects of a novel SDHI, fluindapyr (FIP), were evaluated using earthworm as model non-target organism. Results showed that FIP had a relatively shorter half-live (about 28 days) in artificial soil compared with traditional SDHIs. Besides, FIP exhibited a rapid uptake and bioaccumulation trend in earthworms. For the toxicological effects, FIP suppressed earthworm growth (≥ 5 mg/kg) and reproduction (≥ 1 mg/kg) whereas no lethal effects were observed up to the highest tested concentration of 25 mg/mg. FIP of high exposure concentrations also induced serious epidermis and intestines damage as well as oxidative stress to earthworms after 28-day exposure. In addition, expression of oxidative damage related genes (CAT, CRT, GST, HSP70, SOD) was further verified after FIP exposure. The earthworm Tier 1 RQ also indicated a potential risk for earthworm reproduction. Data presented here may be useful for the risk assessments of FIP in soil ecosystems and help to set appropriate precautions to ensure protection against novel SDHIs.


Assuntos
Fungicidas Industriais , Oligoquetos , Poluentes do Solo , Animais , Fungicidas Industriais/metabolismo , Oligoquetos/metabolismo , Ecossistema , Poluentes do Solo/análise , Estresse Oxidativo , Solo
4.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108486

RESUMO

Oregano is a medicinal and aromatic plant of value in the pharmaceutical, food, feed additive, and cosmetic industries. Oregano breeding is still in its infancy compared with traditional crops. In this study, we evaluated the phenotypes of 12 oregano genotypes and generated F1 progenies by hybridization. The density of leaf glandular secretory trichomes and the essential oil yield in the 12 oregano genotypes varied from 97-1017 per cm2 and 0.17-1.67%, respectively. These genotypes were divided into four terpene chemotypes: carvacrol-, thymol-, germacrene D/ß-caryophyllene-, and linalool/ß-ocimene-type. Based on phenotypic data and considering terpene chemotypes as the main breeding goal, six oregano hybrid combinations were performed. Simple sequence repeat (SSR) markers were developed based on unpublished whole-genome sequencing data of Origanum vulgare, and 64 codominant SSR primers were screened on the parents of the six oregano combinations. These codominant primers were used to determine the authenticity of 40 F1 lines, and 37 true hybrids were identified. These 37 F1 lines were divided into six terpene chemotypes: sabinene-, ß-ocimene-, γ-terpinene-, thymol-, carvacrol-, and p-cymene-type, four of which (sabinene-, ß-ocimene-, γ-terpinene-, and p-cymene-type) were novel (i.e., different from the chemotypes of parents). The terpene contents of 18 of the 37 F1 lines were higher than those of their parents. The above results lay a strong foundation for the creating of new germplasm resources, constructing of genetic linkage map, and mapping quantitative trait loci (QTLs) of key horticultural traits, and provide insights into the mechanism of terpenoid biosynthesis in oregano.


Assuntos
Óleos Voláteis , Origanum , Terpenos , Timol , Origanum/genética , Monoterpenos , Melhoramento Vegetal
5.
J Environ Sci (China) ; 127: 603-614, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522090

RESUMO

Polyhalogenated carbazoles (PHCZs) have been widely accepted as emerging pollutants, whereas their ecological and health risks remain uncertain. Herein, female and male Sprague-Dawley (SD) mice were treated with four typical PHCZs to investigate their negative consequences, along with alternations in gut microbiota to indicate underlying mechanisms. In female mice, the relative liver weight ratio increased after four PHCZs exposure; 2-bromocarbazole (2-BCZ) increased urine glucose level; 3-bromocarbazole (3-BCZ) decreased the glucose and total cholesterol levels; 3,6-dichlorocarbazole (3,6-DCCZ) decreased glucose level. The only disturbed biochemical index in male mice was the promoted alkaline phosphatase (ALP) level by 3,6-DCCZ. We also found that the differential blood biochemical indices were correlated with gut microbiota. 3-BCZ and 3,6-DCCZ altered Bacteroidetes and Proteobacteria phyla in female and male mice, which were correlated with metabolic disorders. Our findings demonstrated the correlation between PHCZs induced potential hepatotoxicity and metabolic disorders may be due to their dioxin-like potentials and endocrine disrupting activities, and the gender differences might result from their estrogenic activities. Overall, data presented here can help to evaluate the ecological and health risks of PHCZs and reveal the underlying mechanisms.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Feminino , Masculino , Animais , Camundongos , Carbazóis/toxicidade , Fígado , Glucose
6.
Sci Total Environ ; 806(Pt 4): 151403, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742801

RESUMO

Quorum sensing signal molecules can be used to regulate the formation of biofilm, but it has not been reported that outer membrane vesicles (OMVs) can package and mediate signal molecules to regulate biofilm. We isolated and purified OMVs packaged with Pseudomonas quinolone signal (PQS) released by Pseudomonas aeruginosa and studied the effects of OMV-mediated PQS on the formation and structure of biofilms. OMV-mediated PQS promoted the growth of biofilm, and the cells in the biofilm were stretched, deformed and "bridged" with the surrounding cells. Raman spectrometry showed that the structure and components of the extracellular polymeric substances of P. aeruginosa changed; moreover extracellular proteins rather than polysaccharides played the dominant role in the formation of P. aeruginosa biofilms when regulated by OMV-mediated PQS. In the combination biofilm formed by P. aeruginosa and Staphylococcus aureus, the mediation of OMVs enhanced the inhibitory effect of PQS to the growth of S. aureus, resulting a decrease in EPS produced by the two bacteria. OMV-mediated PQS led to changes in the biodiversity, richness and structure of the microbial community in biofilms formed by active sludge. This work reveals the mechanism of OMVs mediated signal molecules regulating biofilm, which lays a new theoretical and practical foundation for guiding the operation of low-level of biofouling MBRs.


Assuntos
Percepção de Quorum , Staphylococcus aureus , Biofilmes , Pseudomonas aeruginosa
7.
Biodegradation ; 32(4): 435-448, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33886019

RESUMO

Bacterial genetic material can be horizontally transferred between microorganisms via outer membrane vesicles (OMVs) released by bacteria. Up to now, the application of vesicle-mediated horizontal transfer of "degrading genes" in environmental remediation has not been reported. In this study, the nirS gene from an aerobic denitrification bacterium, Pseudomonas stutzeri, was enclosed in a pET28a plasmid, transformed into Escherichia coli (E. coli) DH5α and expressed in E. coli BL21. The E. coli DH5α released OMVs containing the recombination plasmid pET28a-nirS-EGFP. When compared with the free pET28a-nirS-EGFP plasmid's inability to transform, nirS in OMVs could be transferred into E. coli BL21 with the transformation frequency of 2.76 × 106 CFU/g when the dosage of OMVs was 200 µg under natural conditions, and nirS could express successfully in recipient bacteria. Furthermore, the recipient bacteria that received OMVs containing pET28a-nirS-EGFP could produce 18.16 U/mL activity of nitrite reductase.


Assuntos
Desnitrificação , Escherichia coli , Biodegradação Ambiental , Escherichia coli/genética , Plasmídeos/genética
8.
Biodegradation ; 32(1): 99-112, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33481147

RESUMO

Perfluoroalkyl carboxylates (PFCAs) is toxic to the environment and human health. However, the degradation characteristics of fluorotelomer alcohols (FTOHs), precursors of PFACAs biodegradation, in the sludge during aerobic composting remain unclear. In this study, the degradation characteristics of 6:2 FTOH in sewage sludge by composting were researched and the influences of 6:2 FTOH on the composting process and microbial communities of the sludge were evaluated. After 52 days of composting, 6:2 FTOH retained only 0.73% of its original concentration, and its half-life was less than 1 d; 6:2 FTOH was degraded finally to perfluorohex unsaturated acid, perfluoropentanoic acid, 5:3 polyfluorinated acid (FTCA), 4:3 FTCA, and perfluorobutanoic acid through two pathways; and 6:2 FTCA and 6:2 fluorotel unsaturated acid were the intermediate products. Notably, dosing with 6:2 FTOH affected the composting process of sewage sludge. Additionally, 50 mg/kg 6:2 FTOH resulted in a decrease in the microbial richness and diversity of sludge compost. When compared with the compost without 6:2 FTOH, the proportion of Proteobacteria had increased, and the proportion of Firmicutes had decreased as the concentration of 6:2 FTOH increased. The negative effect of a dosage of 50 mg/kg 6:2 FTOH was more obvious than the effect of other treatments. This study expanded our understanding of the risk of sludge contaminated by 6:2 FTOH being used as a fertilizer after composting.


Assuntos
Compostagem , Esgotos , Álcoois , Biodegradação Ambiental , Ácidos Carboxílicos , Humanos
9.
Biosci Biotechnol Biochem ; 84(7): 1384-1393, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32186471

RESUMO

Seed germination is regulated by light. Phytochromes (Phys) act as red and far-red light photoreceptors to mediate seed germination. However, the mechanism of this process is not well understood. In this study, we found that the Arabidopsis thaliana mutants vascular plant one-zinc finger 1 (voz1) and voz2 showed higher seed germination percentage than wild type when PhyB was inactivated by far-red light. In wild type, VOZ1 and VOZ2 expression were downregulated after seed imbibition, repressed by PhyB, and upregulated by Phytochrome-interacting factor 1 (PIF1), a key negative regulator of seed germination. Red light irradiation and the voz1voz2 mutation caused increased expression of Gibberellin 3-oxidase 1 (GA3ox1), a gibberellin (GA) biosynthetic gene. We also found that VOZ2 is bound directly to the promoter of GA3ox1 in vitro and in vivo. Our findings suggest that VOZs play a negative role in PhyB-mediated seed germination, possibly by directly regulating GA3ox1 expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Germinação/genética , Germinação/efeitos da radiação , Fitocromo B/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Luz , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/genética
10.
R Soc Open Sci ; 5(11): 180551, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564386

RESUMO

In this study, a newly isolated oleaginous fungus, Mucor circinelloides (M. circinelloides) Q531, was able to convert mulberry branches into lipids. The highest yield and the maximum lipid content produced by the fungal cells were 42.43 ± 4.01 mg per gram dry substrate (gds) and 28.8 ± 2.85%, respectively. The main components of lignocellulosic biomass were gradually reduced during solid-state fermentation (SSF). Cellulose, hemicellulose and lignin were decreased from 45.11, 31.39 and 17.36% to 41.48, 28.71, and 15.1%, respectively. Gas chromatography analysis showed that the major compositions of the fermented products were palmitic acid (C16:0, 18.42%), palmitoleic acid (C16:1, 5.56%), stearic acid (C18:0, 5.87%), oleic acid (C18:1, 33.89%), linoleic acid (C18:2, 14.45%) and γ-linolenic acid (C18:3 n6, 22.53%) after 2 days of SSF. The fatty acid methyl esters contained unsaturated fatty acids with a ratio of 75.95%. The composition and content obtained in this study are more advantageous than those of many other biomass lipids. Meanwhile, the oleaginous fungus had a high cellulase activity of 1.39 ± 0.09 FPU gds-1. The results indicate that the enzyme activity of the isolated fungus was capable of converting the cellulose and hemicelluloses to available sugar monomers which are beneficial for the production of lipids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA