Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Immunol Immunopathol ; 265: 110666, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37979488

RESUMO

China is the country with the largest amount of duck breeding as well as duck meat and egg production. In recent years, the emergence and spread of duck Tembusu virus (DTMUV) has become one of the important factors in reducing the amount of duck slaughter, which seriously endangers the duck breeding industry in our country. In-depth research on the mechanism of duck innate immunity facilitates the exploration of new models for the treatment of DTMUV infection. IRF1 can induce the expression of many antiviral immune factors in the animal organism and play an important role in the innate immune response. In this study, we used interfering RNA to knock down the IRF1 gene in DEF cells and then the cells were infected with DTMUV. We found that knockdown of IRF1 promoted DTMUV replication at an early stage and caused downregulation of the expression of several major pattern recognition receptors (PRRs), interleukins (IL), interferons (IFN), antiviral proteins, and MHC molecules by assay, showing that the duIRF1-mediated signaling pathway plays an extremely important role in DTMUV-induced host innate immunity. In addition, we constructed the recombinant expression plasmid pET32a(+)-duIRF1-His, and finally prepared the polyclonal antibody of duIRF1 with good specificity, hoping to provide a detection means for research on the mechanism of IRF1 in innate immunity in our laboratory and in this field.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Patos/genética , Infecções por Flavivirus/veterinária , Flavivirus/genética , Transdução de Sinais , Doenças das Aves Domésticas/genética
2.
Poult Sci ; 102(10): 102969, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566967

RESUMO

Since 2005, novel duck reoviruses have been outbreaks in duck breeding areas such as central China and South China. In recent years, the incidence rate of this disease is still increasing, bringing serious economic losses to waterfowl breeding industry. This study isolated 3 novel duck reoviruses (NDRV-SDLS, NDRV-SDWF, and NDRV-SDYC) from sick ducks in 3 local duck farms in Shandong Province. The study aimed to investigate the characteristics of these viruses. The virus is inoculated into duck embryo fibroblasts, where the virus replicates to produce syncytium and dies within 3 to 5 d. The viruses were also isolated from infected ducks, and RT-PCR amplified the whole genomes after passage purification in duck embryos. The resulting whole genome was analyzed for genetic evolution. The total length of the gene sequencing was 23,418 bp, divided into 10 fragments. Gene sequence comparison showed that the 3 strains had high similarity with novel duck reoviruses (NDRV) but low similarity with chicken-origin reovirus (chicken ARV) and Muscovy duck reovirus (MDRV), especially in the σC segment. Phylogenetic analysis of the 10 fragments showed that the 3 isolates constituted the same evolutionary clade as other DRV reference strains and were far related to ARV and MDRV in different evolutionary clades. The results of all 10 segments indicate that the isolates are in the evolutionary branch of NDRV, suggesting that the novel waterfowl reovirus is the dominant circulating strain in Shandong. This study complements the gene bank information of NDRV and provides references for vaccine research and disease prediction of NDRV in Shandong.


Assuntos
Orthoreovirus Aviário , Doenças das Aves Domésticas , Infecções por Reoviridae , Animais , Orthoreovirus Aviário/genética , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária , Filogenia , Galinhas , China/epidemiologia , Doenças das Aves Domésticas/epidemiologia
3.
Poult Sci ; 102(10): 102920, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37473522

RESUMO

In recent years, with the expansion of duck breeding industry in China, the infection rate of duck circovirus (DuCV) in duck and the mixed infection rate of DuCV with other diseases increased significantly, which seriously endanger the development of duck breeding industry. To study the epidemic status of duck circovirus in China, analyze the virus's genetics and evolution, and establish a foundation for scientific prevention and control of duck circovirus, our laboratory collected 4 disease materials preliminarily diagnosed as duck circovirus infections. Conventional PCR was used to amplify 4 strains of duck circovirus with a full length of 1993bp, and their sequences were compared and analyzed. The analysis showed that the 4 DuCVs had typical circovirus characteristics, including 3 major ORFs: ORFV1 (Rep protein), ORFC1 (Cap protein), ORFC2 (apoptosis-related protein), and a stem ring structure. The 4 strains were compared with 22 other reference strains, and the results revealed that all 4 strains belonged to the DuCV-I type represented by the German strain AY228555. Furthermore, the homology between the 4 DuCVs and the reference strains was up to 98.6%, which help us to understand the genotype and genetic variation of DuCV in these regions and provide a reference for the prevention and control of DuCV.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças das Aves Domésticas , Animais , Circovirus/genética , Doenças das Aves Domésticas/epidemiologia , Galinhas/genética , China/epidemiologia , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , Evolução Molecular , Clonagem Molecular , Filogenia
4.
Front Immunol ; 13: 916350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784309

RESUMO

In mammals, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) has been demonstrated to play a critical role in activating downstream signaling in response to viral RNA. However, its role in ducks' antiviral innate immunity is less well understood, and how gene-mediated signaling is regulated is unknown. The regulatory role of the duck laboratory of genetics and physiology 2 (duLGP2) in the duck RIG-I (duRIG-I)-mediated antiviral innate immune signaling system was investigated in this study. In duck embryo fibroblast (DEF) cells, overexpression of duLGP2 dramatically reduced duRIG-I-mediated IFN-promotor activity and cytokine expression. In contrast, the knockdown of duLGP2 led to an opposite effect on the duRIG-I-mediated signaling pathway. We demonstrated that duLGP2 suppressed the duRIG-I activation induced by duck Tembusu virus (DTMUV) infection. Intriguingly, when duRIG-I signaling was triggered, duLGP2 enhanced the production of inflammatory cytokines. We further showed that duLGP2 interacts with duRIG-I, and this interaction was intensified during DTMUV infection. In summary, our data suggest that duLGP2 downregulated duRIG-I mediated innate immunity against the Tembusu virus. The findings of this study will help researchers better understand the antiviral innate immune system's regulatory networks in ducks.


Assuntos
Patos , Imunidade Inata , Animais , Antivirais/metabolismo , Flavivirus , Mamíferos/metabolismo , Transdução de Sinais/genética
5.
Poult Sci ; 101(1): 101560, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34823176

RESUMO

Interferon regulatory factor 4 (IRF4) is a multifunctional transcription factor that plays an important regulatory role in the interferon (IFN) signaling. IRF4 participates in the process of antivirus, Th cell differentiation and B cell maturation by regulating the expression of IFN and some lymphokines. In this study, Cherry Valley duck IRF4 (duIRF4) was cloned and its cDNA was analyzed. Expression of duIRF4 in a wide variety of tissues and changes in duIRF4 expression due to viral infection also was detected by quantitative real-time PCR. The results show that duIRF4 contains 1,341 bp of ORF encoding a protein with 446 amino acids and contains 3 domains: DNA-binding domain (DBD), IRF-association domain (IAD) and nuclear localization signal (NLS). Quantitative real-time PCR analysis showed that duIRF4 was evenly expressed in all tissues examined, with the highest expression in the spleen, followed by the bursa of Fabricius, and lower in the skin and brain. In addition, expression of duIRF4 in the brain and spleen was significantly upregulated after being infected by duck plague virus, duck Tembusu virus, and novel duck reovirus. These data suggest that duIRF4 may be involved in innate immune response.


Assuntos
Fatores de Restrição Antivirais/imunologia , Patos/imunologia , Fatores Reguladores de Interferon , Animais , Fatores Reguladores de Interferon/imunologia , Transdução de Sinais
6.
Poult Sci ; 101(2): 101598, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34933220

RESUMO

Interferon regulatory factor 8 (IRF8) is also known as interferon (IFN) consensus sequence binding protein (ICSBP), which plays an important role in IFN signal transduction. In this study, we cloned the full-length coding sequence of Cherry Valley duck IRF8 (duIRF8) and analyzed its structure. In addition, we tested the distribution of IRF8 in the tissues of healthy Cherry Valley ducks, and the changes in IRF8 expression levels in the tissues after virus infection. The results show that the open reading frame (ORF) of IRF8 is 1293 bp, encodes 430 amino acids, and have 3 conserved domains: the N-terminal DBD domain, the C-terminal IAD domain, and the NLS domain. Besides, from the analysis of the phylogenetic tree, it can be known that the duIRF8 has the highest homology with the anser cygnoides, and has less homology with the fish. Analyzing the distribution level of IRF8 in the tissues, it is found that the expression level of IRF8 in the liver of Cherry Valley duck is the highest. However, after infection with duck Tambusu virus, novel duck reovirus, and duck plague virus, the expression of IRF8 in the spleen and brain all showed up-regulation. These data indicate that IRF8 is involved in the host's innate immune response against virus in Cherry Valley duck.


Assuntos
Galinhas , Fatores Reguladores de Interferon , Animais , Clonagem Molecular , Imunidade Inata/genética , Fatores Reguladores de Interferon/genética , Filogenia
7.
Vet Microbiol ; 263: 109281, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34785476

RESUMO

Melanoma differentiation associated factor 5 (MDA5), which belongs to the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) family, has been proved to be a key pattern recognition receptor of innate antiviral signaling in duck, which plays an important role in anti-Tembusu virus (TMUV) infection. However, laboratory of genetics and physiology 2 (LGP2), the third member of RLRs family, the regulatory function on antiviral innate immunity of MDA5 is currently unclear. In this study, we investigated the subcellular localization of duck LGP2 (duLGP2) and confirmed that it is an important regulator of the duMDA5-mediated host innate antiviral immune response. The present experimental data demonstrate that the overexpression of duLGP2 inhibits duMDA5 downstream transcriptional factor (IRF-7, IFN-ß, and NF-κB) promoter activity, and duMDA5-mediated type I IFNs and ISGs expression were significantly suppressed by duLGP2 regardless of viral infection in vitro. The inhibition of duLGP2 on the antiviral activity of duMDA5 ultimately leads to an increase in viral replication. However, the overexpression of duLGP2 promotes expression of mitochondrial antiviral-signaling protein (MAVS) and duMDA5-mediated proinflammatory cytokines. This study provides a new rationale support for the duLGP2 regulates duMDA5-mediated anti-viral immune signaling pathway theory in duck.


Assuntos
Patos , Infecções por Flavivirus , Imunidade Inata , Helicase IFIH1 Induzida por Interferon , RNA Helicases , Animais , Antivirais , Flavivirus/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/veterinária , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , RNA Helicases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA