RESUMO
The new hohlraum experimental platform and the quasi-3D simulation model are developed to enable the study of the indirect drive experiment using the six-cylinder-port hohlraum for the first time. It is also the first implosion experiment for the six laser-entrance-hole hohlraum to effectively use all the laser beams of the laser facility that is primarily designed for the cylindrical hohlraum. The experiments performed at the 100 kJ Laser Facility produce a peak hohlraum radiation temperature of â¼222 eV for â¼80 kJ and 2 ns square laser pulse. The inferred x-ray conversion efficiency ηâ¼87% is similar to the cylindrical hohlraum and higher than the octahedral spherical hohlraum at the same laser facility, while the low laser backscatter is similar to the outer cone of the cylindrical hohlraum. The hohlraum radiation temperature and M-band (>1.6 keV) flux can be well reproduced by the quasi-3D simulation. The variations of the yield-over-clean and the hot spot shape can also be semiquantitatively explained by the calculated major radiation asymmetry of the quasi-3D simulation. Our work demonstrates the capability for the study of the indirect drive with the six-cylinder-port hohlraum at the cylindrically configured laser facility, which is essential for numerically assessing the laser energy required by the ignition-scale six-cylinder-port hohlraum.
RESUMO
In inertial confinement approaches to fusion, the asymmetry of target implosion is a major obstacle to achieving high gain in the laboratory. A recently proposed octahedral spherical hohlraum makes it possible to naturally create spherical target irradiation without supplementary symmetry control. Before any decision is made to pursue an ignition-scale laser system based on the octahedral hohlraum, one needs to test the concept with the existing facilities. Here, we report a proof-of-concept experiment for the novel octahedral hohlraum geometry on the cylindrically configured SGIII laser facility without a symmetry control. All polar and equatorial self-emission images of the compressed target show a near round shape of convergence ratio 15 under both square and shaped laser pulses. The observed implosion performances agree well with the ideal spherical implosion simulation. It also shows limitations with using the existing facilities and adds further weight to the need to move to a spherical port geometry for future ignition laser facilities.