RESUMO
For acid-water oxidation, pyrochloric ruthenates are thought to be extremely effective electrocatalysts. In this work, through partial B-site replacement with larger M2+ cations, the electronic states of Y2Ru2O7 with strong electron correlations are reasonably managed, by which the inherent performance is tremendously promoted. Based on this, the improved Y2Ru1.9Sr0.1O7 electrocatalyst exhibits an outstanding durability and presents a highly inherent mass activity of 1915.1 A gRu-1 (at 1.53 V vs RHE). The enhanced oxygen-evolving reaction (OER) activity by ionic dopant in YRO pyrochlore can be attributed to two aspects, i.e., the lattice distortion induced inhibition of the grain coarsening, which results in a large surface area for YRO-M and increases the OER active sites, and the weakening of electron correlation via broadening of the Ru 4d bandwidths due to the increase of the average radius of B-site ions, which gives rise to an enhancement of conductivity and a strengthened hybridization between Ru 4d and O 2p orbitals and improves the reaction kinetics. The synergistic effects of lattice distortion and orbital hybridization promote the enhanced OER activity. The results would provide fresh concepts for the design of improved electrocatalysts and underscore the significance of managing the intrinsic performance through the dual modification of microstructure morphology and electronic structure.
RESUMO
Development of highly active and durable oxygen-evolving catalysts in acid media is a major challenge to design proton exchange membrane water electrolysis for producing hydrogen. Here, we report a quadruple perovskite oxide CaCu3Ru4O12 as a superior catalyst for acidic water oxidation. This complex oxide exhibits an ultrasmall overpotential of 171 mV at 10 mA cm-2geo, which is much lower than that of the state-of-the-art RuO2. Moreover, compared to RuO2, CaCu3Ru4O12 shows a significant increase in mass activity by more than two orders of magnitude and much better stability. Density functional theory calculations reveal that the quadruple perovskite catalyst has a lower Ru 4d-band center relative to RuO2, which effectively optimizes the binding energy of oxygen intermediates and thereby enhances the catalytic activity.
RESUMO
We explore the role of oxygen vacancies in the oxygen evolution reaction (OER) for double perovskite PrBaCo2O6-δ. Interestingly, we find that largely increasing oxygen vacancies leads to a significant reduction in the intrinsic OER activity. Structural studies reveal that oxygen vacancies tend to orderly align in PrO1-δ. This ordered structure not only lowers the cobalt oxidation states but also triggers a spin-state transition from high-spin to low-spin states for cobalt ions, both greatly slowing the OER kinetics.
RESUMO
The activity of electrocatalysts exhibits a strongly dependence on their electronic structures. Specifically, for perovskite oxides, Shao-Horn and co-workers have reported a correlation between the oxygen evolution reaction activity and the eg orbital occupation of transition-metal ions, which provides guidelines for the design of highly active catalysts. Here we demonstrate a facile method to engineer the eg filling of perovskite cobaltite LaCoO3 for improving the oxygen evolution reaction activity. By reducing the particle size to â¼80 nm, the eg filling of cobalt ions is successfully increased from unity to near the optimal configuration of 1.2 expected by Shao-Horn's principle. Consequently, the activity is significantly enhanced, comparable to those of recently reported cobalt oxides with eg(â¼1.2) configurations. This enhancement is ascribed to the emergence of spin-state transition from low-spin to high-spin states for cobalt ions at the surface of the nanoparticles, leading to more active sites with increased reactivity.