Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Oncol ; 13: 1100045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756161

RESUMO

Follistatin-like 1 (FSTL1) is a cancer-related matricellular secretory protein with contradictory organ-specific roles. Its contribution to the pathogenesis of cervical carcinoma is still not clear. Meanwhile, it is necessary to identify novel candidate genes to understand cervical carcinoma's pathogenesis further and find potential therapeutic targets. We collected cervical carcinoma samples and matched adjacent tissues from patients with the locally-advanced disease and used cervical carcinoma cell lines HeLa and C33A to evaluate the effects of FSTL1 on CC cells. The mRNA transcription and protein expression of FSTL1 in cervical carcinoma tumor biopsy tissues were lower than those of matched adjacent tissues. Patients with a lower ratio of FSTL1 mRNA between the tumor and its matched adjacent tissues showed a correlation with the advanced cervical carcinoma FIGO stages. High expression of FSTL1 markedly inhibited the proliferation, motility, and invasion of HeLa and C33A. Regarding mechanism, FSTL1 plays its role by negatively regulating the BMP4/Smad1/5/9 signaling. Our study has demonstrated the tumor suppressor effect of FSTL1, and these findings suggested a potential therapeutic target and biomarker for cervical carcinoma.

3.
Proc Biol Sci ; 290(1990): 20221963, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629101

RESUMO

Wolbachia are the most widely distributed intracellular bacteria, and their most common effect on host phenotype is cytoplasmic incompatibility (CI). A variety of models have been proposed to decipher the molecular mechanism of CI, among which the host modification (HM) model predicts that Wolbachia effectors play an important role in sperm modification. However, owing to the complexity of spermatogenesis and testicular cell-type heterogeneity, whether Wolbachia have different effects on cells at different stages of spermatogenesis or whether these effects are linked with CI remains unknown. Therefore, we used single-cell RNA sequencing to analyse gene expression profiles in adult male Drosophila testes that were infected or uninfected by Wolbachia. We found that Wolbachia significantly affected the proportion of different types of germ cells and affected multiple metabolic pathways in germ cells. Most importantly, Wolbachia had the greatest impact on germline stem cells, resulting in dysregulated expression of genes related to DNA compaction, and Wolbachia infection also influenced the histone-to-protamine transition in the late stage of sperm development. These results support the HM model and suggest that future studies on Wolbachia-induced CI should focus on cells in the early stages of spermatogenesis.


Assuntos
Drosophila , Wolbachia , Animais , Masculino , Drosophila/genética , Wolbachia/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Transcriptoma , Sêmen , Espermatogênese , Citoplasma/microbiologia
4.
Open Biol ; 12(9): 220108, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36167086

RESUMO

In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I (mt-cox1), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy.


Assuntos
Drosophila melanogaster , Complexo IV da Cadeia de Transporte de Elétrons , Animais , DNA Mitocondrial/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Histonas , Masculino , Espécies Reativas de Oxigênio/metabolismo , Água
5.
Mol Ecol Resour ; 22(8): 2967-2980, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35757869

RESUMO

DNA barcoding and metabarcoding have been increasingly used in species delimitation and species diversity assessment, respectively, and the molecular markers used in animals are mainly derived from mitochondrial DNA. It is well known that the phenomenon of multiple mitochondrial haplotypes within the same specimen (hereafter referred to as "mitotype diversity") may have a negative impact on the proper assessment of biodiversity by metabarcoding. However, few studies have focused on the incidence of this phenomenon and its effects on metabarcoding results using different sample preparation strategies, such as mock community construction using pooled high-throughput sequencing (HTS) data, DNA-pooling and Tissue-pooling. In this study, we investigated mitotype diversity and its influence on metabarcoding based on 398 specimens from 66 species of Insecta and 82 specimens from 16 species of Arachnida by HTS of the mitochondrial cox1 gene fragment. The results revealed that mitotype diversity was common in the studied taxa and significantly increased the number of operational taxonomic units (OTUs) using the three sample preparation strategies. The results also showed that the bioinformatics pipeline based on authentic amplicon sequence variants was more reliable than the pipeline based on OTUs. Regarding the sample preparation strategies of DNA-pooling and Tissue-pooling commonly used in metabarcoding, our results revealed that their results of metabarcoding were quite similar, and the Tissue-pooling strategy was therefore preferred because of its simplicity. Our study calls for additional attention to the interference of mitotype diversity on the results of DNA metabarcoding in biodiversity assessment.


Assuntos
Aracnídeos , Código de Barras de DNA Taxonômico , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA Mitocondrial/genética , Insetos/genética
6.
Front Microbiol ; 13: 892767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651499

RESUMO

Insects have a long history of being used in medicine, with clear primary and secondary functions and less side effects, and the study and exploitation of medicinal insects have received increasing attention. Insects gut microbiota and their metabolites play an important role in protecting the hosts from other potentially harmful microbes, providing nutrients, promoting digestion and degradation, and regulating growth and metabolism of the hosts. However, there are still few studies linking the medicinal values of insects with their gut microbes. In this study, we focused on the specific gut microbiota common to medicinal insects, hoping to trace the potential connection between medicinal values and gut microbes of medicinal insects. Based on 16S rRNA gene sequencing data, we compared the gut microbiota of medicinal insects [Periplaneta americana, Protaetia (Liocola) brevitarsis (Lewis) and Musca domestica], in their medicinal stages, and non-medicinal insects (Hermetia illucens L., Tenebrio molitor, and Drosophila melanogaster), and found that the intestinal microbial richness of medicinal insects was higher, and there were significant differences in the microbial community structure between the two groups. We established a model using a random-forest method to preliminarily screen out several types of gut microbiota common to medicinal insects that may play medicinal values: Parabacteroides goldsteinii, Lactobacillus dextrinicus, Bifidobacterium longum subsp. infantis (B. infantis), and Vagococcus carniphilus. In particular, P. goldsteinii and B. infantis were most probably involved in the anti-inflammatory effects of medicinal insects. Our results revealed an association between medicinal insects and their gut microbes, providing new development directions and possibly potential tools for utilizing microbes to enhance the medicinal efficacy of medicinal insects.

7.
J Genet Genomics ; 48(3): 225-236, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-34011484

RESUMO

Figs and fig pollinators are one of the few classic textbook examples of obligate pollination mutualism. The specific dependence of fig pollinators on the relatively safe living environment with sufficient food sources in the enclosed fig syconia implies that they are vulnerable to habitat changes. However, there is still no extensive genomic evidence to reveal the evolutionary footprint of this long-term mutually beneficial symbiosis in fig pollinators. In fig syconia, there are also non-pollinator species. The non-pollinator species differ in their evolutionary and life histories from pollinators. We conducted comparative analyses on 11 newly sequenced fig wasp genomes and one previously published genome. The pollinators colonized the figs approximately 66.9 million years ago, consistent with the origin of host figs. Compared with non-pollinators, many more genes in pollinators were subject to relaxed selection. Seven genes were absent in pollinators in response to environmental stress and immune activation. Pollinators had more streamlined gene repertoires in the innate immune system, chemosensory toolbox, and detoxification system. Our results provide genomic evidence for the differentiation between pollinators and nonpollinators. The data suggest that owing to the long-term adaptation to the fig, some genes related to functions no longer required are absent in pollinators.


Assuntos
Ficus , Animais , Polinização , Vespas
8.
Microb Ecol ; 82(3): 805-817, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33555369

RESUMO

Wolbachia is a genus of intracellular symbiotic bacteria that are widely distributed in arthropods and nematodes. These maternally inherited bacteria regulate host reproductive systems in various ways to facilitate their vertical transmission. Since the identification of Wolbachia in many insects, the relationship between Wolbachia and the host has attracted great interest. Numerous studies have indicated that Wolbachia modifies a variety of biological processes in the host. Previous studies in Drosophila melanogaster (D. melanogaster) have demonstrated that Wolbachia can affect spermatid differentiation, chromosome deposition, and sperm activity in the early stages of spermatogenesis, leading to sperm dysfunction. Here, we explored the putative effect of Wolbachia in sperm maturation using transcriptomic approaches to compare gene expression in Wolbachia-infected and Wolbachia-free D. melanogaster adult testes. Our findings show that Wolbachia affects many biological processes in D. melanogaster adult testes, and most of the differentially expressed genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia. In contrast, some genes that are putatively associated with cutin and wax biosynthesis and peroxisome pathways were downregulated. We did not find any differentially expressed genes that are predicted to be related to spermatogenesis in the datasets. This work provides additional information for understanding the Wolbachia-host intracellular relationships.


Assuntos
Wolbachia , Animais , Drosophila , Drosophila melanogaster/genética , Masculino , Testículo , Transcriptoma , Wolbachia/genética
9.
Front Microbiol ; 11: 595629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281793

RESUMO

The symbiosis system comprising eukaryotic hosts, intracellular bacterium Wolbachia, and temperate bacteriophages WO is widely spread through nearly half the number of arthropod species. The relationships between the three components of the system are extremely intricate. Even though the bacteriophage WO can have diverse influences on the ecology and evolution of Wolbachia, little is known about the distribution and evolution of the phages. To the best of our knowledge, this study is the first to report that in infected fig wasps (Ceratosolen solmsi, Kradibia gibbosae, and Wiebesia pumilae), the genomes of all the Wolbachia strains had only one cryptic WO prophage, which contained defects in the genomic structural modules. This phenomenon was contrary to the widely accepted understanding that Wolbachia with cryptic prophages usually possesses at least one intact WO prophage consisting of gene sequences of the head, baseplate, and tail modules, through which the prophage could form intact virions. In addition to the genetic structure features, the phylogenetic relationships of WO and Wolbachia also revealed that bacteriophage WO can horizontally spread among a certain genus or a group of insect hosts, nearly free from the restriction of the affiliation of Wolbachia. Combined with the vertical transmission along with Wolbachia, the wide spread of WO phages can be explained. Furthermore, the gender preference and functional module preference for transcriptional activity of the genes in cryptic WOs implied the antagonized coevolutionary pattern between WO prophages and their Wolbachia hosts.

10.
Insects ; 11(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036463

RESUMO

Mitochondrial DNA sequences can be transferred into the nuclear genome, giving rise to nuclear mitochondrial DNA sequences (NUMTs). NUMTs have been described in numerous eukaryotes. However, the studies on the distribution of NUMTs and its influencing factors are still inadequate and even controversial. Previous studies have suggested that Hymenoptera may be a group rich in NUMTs, in which we selected 11 species of fig wasps (Chalcidoidea, Hymenoptera) to analyze the distribution and evolution of NUMTs at the genomic level. The results showed that the contents of NUMTs varied greatly in these species, and bursts of NUMTs existed in some species or lineages. Further detailed analyses showed that the large number of NUMTs might be related to the large genomes; NUMTs tended to be inserted into unstable regions of the genomes; and the inserted NUMTs might also be affected by transposable elements (TEs) in the neighbors, leading to fragmentations and duplications, followed by bursts of NUMTs. In summary, our results suggest that a variety of genomic environmental factors can determine the insertion and post-insertion fate of NUMTs, resulting in their species- or lineage-specific distribution patterns, and that studying the evolution of NUMTs can provide good evidence and theoretical basis for exploring the dynamics of exogenous DNA entering into the nuclear genome.

11.
Yeast ; 33(9): 493-506, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27121326

RESUMO

Apoptosis-inducing factor (AIF) is a conserved flavoprotein localized in the mitochondria, inducing apoptosis after translocation into the nucleus. However, its role in the important fungal pathogen, Candida albicans, remains to be investigated. In this study, we find that the C. albicans AIF protein Aif1, similar to its homologues in other organisms, is localized at the mitochondria and translocated into the nucleus under apoptosis-inducing conditions. Moreover, deletion of AIF1 causes attenuated apoptosis in this pathogen under apoptosis-inducing conditions, such as the treatment of 2 mm H2 O2 , 10 mm acetic acid or 0.08 mg/l caspofungin, and its overexpression enhances this process. Interestingly, treatment with high levels of these agents leads to reversed sensitivity of aif1Δ/Δ and the overexpression strain AIF1ov. In addition, the virulence of C. albicans is not affected by deletion or overexpression of AIF1. Hence, C. albicans Aif1, as a mitochondria-localized protein, plays a dual role in the regulation of cell death under different concentrations of the stress-caused agents. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Candida albicans/enzimologia , Morte Celular/fisiologia , Proteínas Fúngicas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Estresse Fisiológico , Ácido Acético/farmacologia , Antifúngicos/farmacologia , Apoptose , Candida albicans/genética , Candida albicans/patogenicidade , Caspofungina , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Peróxido de Hidrogênio/farmacologia , Lipopeptídeos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , NADH NADPH Oxirredutases/genética , Filogenia , Espécies Reativas de Oxigênio , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA