Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 38(1): e14168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37563953

RESUMO

The continued loss of freshwater habitats poses a significant threat to global biodiversity. We reviewed the extinction risk of 166 freshwater aquatic and semiaquatic mammals-a group rarely documented as a collective. We used the International Union for the Conservation of Nature Red List of Threatened Species categories as of December 2021 to determine extinction risk. Extinction risk was then compared among taxonomic groups, geographic areas, and biological traits. Thirty percent of all freshwater mammals were listed as threatened. Decreasing population trends were common (44.0%), including a greater rate of decline (3.6% in 20 years) than for mammals or freshwater species as a whole. Aquatic freshwater mammals were at a greater risk of extinction than semiaquatic freshwater mammals (95% CI -7.20 to -1.11). Twenty-nine species were data deficient or not evaluated. Large species (95% CI 0.01 to 0.03) with large dispersal distances (95% CI 0.03 to 0.15) had a higher risk of extinction than small species with small dispersal distances. The number of threatening processes associated with a species compounded their risk of extinction (95% CI 0.28 to 0.77). Hunting, land clearing for logging and agriculture, pollution, residential development, and habitat modification or destruction from dams and water management posed the greatest threats to these species. The basic life-history traits of many species were poorly known, highlighting the need for more research. Conservation of freshwater mammals requires a host of management actions centered around increased protection of riparian areas and more conscientious water management to aid the recovery of threatened species.


Riesgo de extinción de los mamíferos de agua dulce Resumen La pérdida continua de hábitats de agua dulce representa una amenaza importante para la biodiversidad mundial. Analizamos el riesgo de extinción de 166 especies de mamíferos acuáticos y semiacuáticos de agua dulce-un grupo que se documenta pocas veces como colectivo. Usamos las categorías de la Lista Roja de Especies Amenazadas de la Unión Internacional para la Conservación de la Naturaleza de diciembre 2021 para determinar el riesgo de extinción. Después comparamos este riesgo entre grupos taxonómicos, áreas geográficas y caracteres biológicos. El 30% de los mamíferos de agua dulce están categorizados como amenazados. La declinación de las tendencias poblacionales fue común (44.0%), incluyendo una mayor tasa de declinación (3.6% en 20 años) que para los mamíferos o las especies de agua dulce como conjunto. Los mamíferos acuáticos de agua dulce se encuentran en mayor riesgo de extinción que los mamíferos semiacuáticos (95% IC -7.20 a -1.11). Veintinueve especies no contaban con suficientes datos o no estaban evaluadas. Las especies grandes (95% IC 0.01 a 0.03) con distancias de dispersión amplias (95% IC 0.03 a 0.15) tuvieron un mayor riesgo de extinción que las especies pequeñas con menores distancias de dispersión. El número de procesos amenazantes asociados a alguna especie agravó su riesgo de extinción (95% CI 0.28 a 0.77). Las principales amenazas para estas especies fueron la cacería, el desmonte de tierras para tala y agricultura, la contaminación, los desarrollos residenciales y la destrucción o modificación del hábitat causados por presas o manejo hidrológico. Se sabe poco sobre los caracteres básicos de la historia de vida de muchas especies, lo que destaca la necesidad de más investigación al respecto. La conservación de mamíferos de agua dulce requiere una serie de acciones gestoras centradas en el incremento de la protección de las áreas ribereñas y una gestión hidrológica más consciente para ayudar a la recuperación de las especies amenazadas.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Animais , Espécies em Perigo de Extinção , Mamíferos , Biodiversidade , Ecossistema , Água Doce
2.
PLoS One ; 18(9): e0291641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768982

RESUMO

Reptiles are an important part of the vertebrate fauna in the temperate woodlands of south-eastern Australia. However, compared to birds and mammals, the long-term occurrence of reptiles across woodland growth types-old growth, regrowth, and replantings-remains poorly understood. Here, using 18-years of data gathered at 218 sites across 1.5 million hectares in New South Wales South West Slopes bioregion, we sought to quantify patterns of temporal change in reptile occurrence and determine if such changes varied between woodland growth types. Despite extensive sampling, almost 75% of our 6341 surveys produced no detections of reptiles. Significant survey effort exceeding 2000 surveys was needed over a prolonged period of time to record detections of 26 reptile species in our study area. Our analyses showed a temporal increase in estimated reptile species richness and abundance over 18 years. Such increases characterized all three vegetation structural types we surveyed. At the individual species level, we had sufficient data to construct models for five of the 26 species recorded. Three of these species were least commonly detected in replantings, whereas the remaining two were most often detected in replantings relative to old growth and regrowth woodland. We found evidence of a temporal increase in two skink species, a decline in one gecko species, and no change in the remaining two skink species. Although detections were consistently low, active searches were the best survey method, and we suggest using this method in habitats known to be hotspots for reptiles, such as rocky outcrops, if the aim is to maximize the number of individuals and species detected. Our findings highlight the value of all three broad vegetation structure types in contributing to woodland reptile biodiversity.


Assuntos
Florestas , Lagartos , Humanos , Animais , Ecossistema , Répteis , Biodiversidade , New South Wales , Conservação dos Recursos Naturais/métodos , Mamíferos
3.
Ecol Appl ; 33(1): e2728, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053922

RESUMO

Monitoring vegetation restoration is challenging because monitoring is costly, requires long-term funding, and involves monitoring multiple vegetation variables that are often not linked back to learning about progress toward objectives. There is a clear need for the development of targeted monitoring programs that focus on a reduced set of variables that are tied to specific restoration objectives. In this paper, we present a method to progress the development of a targeted monitoring program, using a pre-existing state-and-transition model. We (1) use field data to validate an expert-derived classification of woodland vegetation states; (2) use these data to identify which variable(s) help differentiate woodland states; and (3) identify the target threshold (for the variable) that signifies if the desired transition has been achieved. The measured vegetation variables from each site in this study were good predictors of the different states. We show that by measuring only a few of these variables, it is possible to assign the vegetation state for a collection of sites, and monitor if and when a transition to another state has occurred. For this ecosystem and state-and-transition models, out of nine vegetation variables considered, the density of immature trees and percentage of exotic understory vegetation cover were the variables most frequently specified as effective to define a threshold or transition. We synthesize findings by presenting a decision tree that provides practical guidance for the development of targeted monitoring strategies for woodland vegetation.


Assuntos
Ecossistema , Florestas
4.
Biol Rev Camb Philos Soc ; 96(6): 2735-2754, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34269510

RESUMO

Artificial refuges are human-made structures that aim to create safe places for animals to breed, hibernate, or take shelter in lieu of natural refuges. Artificial refuges are used across the globe to mitigate the impacts of a variety of threats on wildlife, such as habitat loss and degradation. However, there is little understanding of the science underpinning artificial refuges, and what comprises best practice for artificial refuge design and implementation for wildlife conservation. We address this gap by undertaking a systematic review of the current state of artificial refuge research for the conservation of wildlife. We identified 224 studies of artificial refuges being implemented in the field to conserve wildlife species. The current literature on artificial refuges is dominated by studies of arboreal species, primarily birds and bats. Threatening processes addressed by artificial refuges were biological resource use (26%), invasive or problematic species (20%), and agriculture (15%), yet few studies examined artificial refuges specifically for threatened (Vulnerable, Endangered, or Critically Endangered) species (7%). Studies often reported the characteristics of artificial refuges (i.e. refuge size, construction materials; 87%) and surrounding vegetation (35%), but fewer studies measured the thermal properties of artificial refuges (18%), predator activity (17%), or food availability (3%). Almost all studies measured occupancy of the artificial refuges by target species (98%), and over half measured breeding activity (54%), whereas fewer included more detailed measures of fitness, such as breeding productivity (34%) or animal body condition (4%). Evaluating the benefits and impacts of artificial refuges requires sound experimental design, but only 39% of studies compared artificial refuges to experimental controls, and only 10% of studies used a before-after-control-impact (BACI) design. As a consequence, few studies of artificial refuges can determine their overall effect on individuals or populations. We outline a series of key steps in the design, implementation, and monitoring of artificial refuges that are required to avoid perverse outcomes and maximise the chances of achieving conservation objectives. This review highlights a clear need for increased rigour in studies of artificial refuges if they are to play an important role in wildlife conservation.


Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Animais , Aves , Ecossistema , Melhoramento Vegetal
5.
Glob Chang Biol ; 25(2): 675-685, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30431211

RESUMO

Species occurrence is influenced by a range of factors including habitat attributes, climate, weather, and human landscape modification. These drivers are likely to interact, but their effects are frequently quantified independently. Here, we report the results of a 13-year study of temperate woodland birds in south-eastern Australia to quantify how different-sized birds respond to the interacting effects of: (a) short-term weather (rainfall and temperature in the 12 months preceding our surveys), (b) long-term climate (average rainfall and maximum and minimum temperatures over the period 1970-2014), and (c) broad structural forms of vegetation (old-growth woodland, regrowth woodland, and restoration plantings). We uncovered significant interactions between bird body size, vegetation type, climate, and weather. High short-term rainfall was associated with decreased occurrence of large birds in old-growth and regrowth woodland, but not in restoration plantings. Conversely, small bird occurrence peaked in wet years, but this effect was most pronounced in locations with a history of high rainfall, and was actually reversed (peak occurrence in dry years) in restoration plantings in dry climates. The occurrence of small birds was depressed-and large birds elevated-in hot years, except in restoration plantings which supported few large birds under these circumstances. Our investigation suggests that different mechanisms may underpin contrasting responses of small and large birds to the interacting effects of climate, weather, and vegetation type. A diversity of vegetation cover is needed across a landscape to promote the occurrence of different-sized bird species in agriculture-dominated landscapes, particularly under variable weather conditions. Climate change is predicted to lead to widespread drying of our study region, and restoration plantings-especially currently climatically wet areas-may become critically important for conserving bird species, particularly small-bodied taxa.


Assuntos
Aves/fisiologia , Tamanho Corporal , Mudança Climática , Clima , Florestas , Tempo (Meteorologia) , Animais , Agricultura Florestal , New South Wales
6.
Ecol Appl ; 26(2): 557-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27209795

RESUMO

Fire is a major ecological process in many ecosystems worldwide. We sought to identify which attributes of fire regimes affect temporal change in the presence and abundance of Australian native mammals. Our detailed study was underpinned by time series data on 11 mammal species at 97 long-term sites in southeastern Australia between 2003 and 2013. We explored how temporal aspects of fire regimes influenced the presence and conditional abundance of species. The key fire regime components examined were: (1) severity of a major fire in 2003, (2) interval between the last major fire (2003) and the fire prior to that, and (3) number of past fires. Our long-term data set enabled quantification of the interactions between survey year and each fire regime variable: an ecological relationship missing from temporally restricted studies. We found no evidence of any appreciable departures from the assumption of independence of the sites. Multiple aspects of fire regimes influenced temporal variation in the presence and abundance of mammals. The best models indicated that six of the 11 species responded to two or more fire regime variables, with two species influenced by all three fire regime attributes. Almost all species responded to time since fire, either as an interaction with survey year or as a main effect. Fire severity or its interaction with survey year was important for most terrestrial rodents. The number of fires at a site was significant for terrestrial rodents and several other species. Our findings contain evidence of the effects on native mammals of heterogeneity in fire regimes. Temporal response patterns of mammal species were influenced by multiple fire regime attributes, often in conjunction with survey year. This underscores the critical importance of long-term studies of biota that are coupled with data sets characterized by carefully documented fire history, severity, and frequency. Long-term studies are essential to predict animal responses to fires and guide management of when and where (prescribed) fire or, conversely, long-unburned vegetation is needed. The complexity of observed responses highlights the need for large reserves in which patterns of heterogeneity in fire regimes can be sustained in space and over time.


Assuntos
Comportamento Animal , Ecossistema , Incêndios , Mamíferos , Animais , Austrália , Fatores de Tempo
7.
PLoS One ; 9(10): e109830, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337999

RESUMO

Ecogeographical rules help explain spatial and temporal patterns in intraspecific body size. However, many of these rules, when applied to ectothermic organisms such as reptiles, are controversial and require further investigation. To explore factors that influence body size in reptiles, we performed a heuristic study to examine body size variation in an Australian lizard, Boulenger's Skink Morethia boulengeri from agricultural landscapes in southern New South Wales, south-eastern Australia. We collected tissue and morphological data on 337 adult lizards across a broad elevation and climate gradient. We used a model-selection procedure to determine if environmental or ecological variables best explained body size variation. We explored the relationship between morphology and phylogenetic structure before modeling candidate variables from four broad domains: (1) geography (latitude, longitude and elevation), (2) climate (temperature and rainfall), (3) habitat (vegetation type, number of logs and ground cover attributes), and (4) management (land use and grazing history). Broad phylogenetic structure was evident, but on a scale larger than our study area. Lizards were sexually dimorphic, whereby females had longer snout-vent length than males, providing support for the fecundity selection hypothesis. Body size variation in M. boulengeri was correlated with temperature and rainfall, a pattern consistent with larger individuals occupying cooler and more productive parts of the landscape. Climate change forecasts, which predict warmer temperature and increased aridity, may result in reduced lizard biomass and decoupling of trophic interactions with potential implications for community organization and ecosystem function.


Assuntos
Tamanho Corporal/fisiologia , Lagartos/anatomia & histologia , Caracteres Sexuais , Animais , Clima , Ecossistema , Feminino , Geografia , Lagartos/fisiologia , Masculino , Filogenia , Austrália do Sul
8.
PLoS One ; 9(5): e97029, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830684

RESUMO

Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1) How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2) Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3) Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha) over two time periods across a large (6,800 km(2)) agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.


Assuntos
Agricultura/métodos , Aves , Conservação dos Recursos Naturais , Animais , Austrália , Biodiversidade , Ecologia , Florestas , Dinâmica Populacional , Reprodutibilidade dos Testes , Especificidade da Espécie , Fatores de Tempo
9.
Ecol Appl ; 24(6): 1275-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29160651

RESUMO

Scale is a key concept in ecology, but the statistically based quantification of scale effects has often proved difficult. This is exemplified by the challenges of quantifying relationships between biodiversity and vegetation cover at different spatial scales to guide restoration and conservation efforts in agricultural environments. We used data from 2002 to 2010 on 184 sites (viz., site scale) nested within 46 farms (the farm scale), nested within 23 landscapes (the landscape scale). We found cross-sectional relationships with the amount of vegetation cover that were typically positive for woodland birds and negative for open-country birds. However, for some species, relationships differed between spatial scales, suggesting differences in nesting and foraging requirements. There was a 3.5% increase in the amount of native vegetation cover in our study region between 2002 and 2010, and our analyses revealed that some open country species responded negatively to these temporal changes, typically at the farm and/or site scale, but not the landscape scale. Species generally exhibited stronger cross-sectional relationships with the amount of vegetation cover than relationships between changes in occupancy and temporal changes in vegetation cover. This unexpected result can be attributed to differences in habitat use by birds of existing vegetation cover (typically old-growth woodland) vs. plantings and natural regeneration, which are the main contributors to temporal increases in vegetation cover. By taking a multi-scaled empirical approach, we have identified species-specific, scale-dependent responses to vegetation cover. These findings are of considerable practical importance for understanding which species will respond to different scales of protection of existing areas of native vegetation, efforts to increase the amount of native vegetation over time, and both approaches together.


Assuntos
Aves/fisiologia , Monitoramento Ambiental/métodos , Florestas , Agricultura , Distribuição Animal , Animais , Austrália , Conservação dos Recursos Naturais , Estudos Transversais , Modelos Biológicos , Dinâmica Populacional , Fatores de Tempo
10.
PLoS One ; 7(4): e34527, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22493698

RESUMO

The value for biodiversity of large intact areas of native vegetation is well established. The biodiversity value of regrowth vegetation is also increasingly recognised worldwide. However, there can be different kinds of revegetation that have different origins. Are there differences in the richness and composition of biotic communities in different kinds of revegetation? The answer remains unknown or poorly known in many ecosystems. We examined the conservation value of different kinds of revegetation through a comparative study of birds in 193 sites surveyed over ten years in four growth types located in semi-cleared agricultural areas of south-eastern Australia. These growth types were resprout regrowth, seedling regrowth, plantings, and old growth. Our investigation produced several key findings: (1) Marked differences in the bird assemblages of plantings, resprout regrowth, seedling regrowth, and old growth. (2) Differences in the number of species detected significantly more often in the different growth types; 29 species for plantings, 25 for seedling regrowth, 20 for resprout regrowth, and 15 for old growth. (3) Many bird species of conservation concern were significantly more often recorded in resprout regrowth, seedling regrowth or plantings but no species of conservation concern were recorded most often in old growth. We suggest that differences in bird occurrence among different growth types are likely to be strongly associated with growth-type differences in stand structural complexity.Our findings suggest a range of vegetation growth types are likely to be required in a given farmland area to support the diverse array of bird species that have the potential to occur in Australian temperate woodland ecosystems. Our results also highlight the inherent conservation value of regrowth woodland and suggest that current policies which allow it to be cleared or thinned need to be carefully re-examined.


Assuntos
Aves/fisiologia , Espécies em Perigo de Extinção , Desenvolvimento Vegetal , Plântula/crescimento & desenvolvimento , Agricultura , Animais , Austrália , Biota , Agricultura Florestal , Filogeografia , Dinâmica Populacional
11.
Conserv Biol ; 22(3): 742-52, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18477028

RESUMO

Biodiversity conservation on agricultural land is a major issue worldwide. We estimated separate and joint effects of remnant native woodland vegetation and recent tree plantings on birds on farms (approximately 500-1000 ha) in the heavily cleared wheat and sheep belt of southern Australia. Much of the variation (>70%) in bird responses was explained by 3 factors: remnant native-vegetation attributes (native grassland, scattered paddock trees, patches of remnant native woodland); presence or absence of planted native trees; and the size and shape of tree plantings. In terms of the number of species, remnant native vegetation was more important than tree planting, in a 3:1 ratio, approximately. Farms with high values for remnant native vegetation were those most likely to support declining or vulnerable species, although some individual species of conservation concern occurred on farms with large plantings. Farm management for improved bird conservation should account for the cumulative and complementary contributions of many components of remnant native-vegetation cover (e.g., scattered paddock trees and fallen timber) as well as areas of restored native vegetation.


Assuntos
Agricultura , Aves/fisiologia , Ecossistema , Árvores , Animais , Conservação dos Recursos Naturais , Dinâmica Populacional
12.
Ecol Appl ; 18(8): 1967-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19263891

RESUMO

Disturbance is a key ecological process influencing the distribution and abundance of many elements of the earth's biota. Predicting the response of biota to disturbance is therefore important, but it nevertheless remains difficult to make accurate forecasts of response. We tested predictions from disturbance-related theories and concepts in 10 vegetation types at Booderee National Park (southeastern Australia) using a retrospective study of bird responses to fire history (over 35 years) on 110 sites and a prospective study following a single wildfire event in 2003 at 59 of these sites. Our data did not support predictions from the intermediate-disturbance hypothesis; observed bird species richness at a site was significantly (F(1,99) = 6.30, P = 0.014) negatively related to the number of fires since 1972 and was 8.7% lower (95% CI, 1.8-15.1%) for each additional fire. In contrast to fire history effects, we found that after the 2003 fire, the vast majority of individual species and the bird assemblage per se in most vegetation types recovered within two years. Thus, recovery after a single fire did not reflect long-term effects of multiple fires on overall bird species richness at a site. We postulated that the recovery of bird species richness and bird assemblage composition after the 2003 fire would be fastest in structurally simple vegetation types and slowest in structurally complex vegetation, but observed the opposite. Although observed bird species richness in vertically heterogeneous forest and woodland had returned to prefire levels by 2006, bird species richness in structurally simple vegetation types (e.g., sedgeland) had not. Postfire vegetation regeneration, together with a paucity of early-successional specialists, would explain the speed of recovery of the bird assemblage and why it changed relatively little during our investigation.


Assuntos
Comportamento Animal , Biodiversidade , Aves/fisiologia , Incêndios , Animais , Austrália , Sistemas de Informação Geográfica , Densidade Demográfica , Dinâmica Populacional , Fatores de Tempo
13.
Ecol Appl ; 17(2): 609-19, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17489264

RESUMO

We report reptile and arboreal marsupial responses to vegetation planting and remnant native vegetation in agricultural landscapes in southeastern Australia. We used a hierarchical survey to select 23 landscapes that varied in the amounts of remnant native vegetation and planted native vegetation. We selected two farms within each landscape. In landscapes with plantings, we selected one farm with and one farm without plantings. We surveyed arboreal marsupials and reptiles on four sites on each farm that encompassed four vegetation types (plantings 7-20 years old, old-growth woodland, naturally occurring seedling regrowth woodland, and coppice [i.e., multistemmed] regrowth woodland). Reptiles and arboreal marsupials were less likely to occur on farms and in landscapes with comparatively large areas of plantings. Such farms and landscapes had less native vegetation, fewer paddock trees, and less woody debris within those areas of natural vegetation. The relatively large area of planting on these farms was insufficient to overcome the lack of these key structural attributes. Old-growth woodland, coppice regrowth, seedling regrowth, and planted areas had different habitat values for different reptiles and arboreal marsupials. We conclude that, although plantings may improve habitat conditions for some taxa, they may not effectively offset the negative effects of native vegetation clearing for all species, especially those reliant on old-growth woodland. Restoring suitable habitat for such species may take decades to centuries.


Assuntos
Agricultura/métodos , Ecossistema , Marsupiais/fisiologia , Plantas , Répteis/fisiologia , Animais , Conservação dos Recursos Naturais/métodos , New South Wales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA