Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Nutr Food Res ; 67(14): e2200716, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150886

RESUMO

SCOPE: A prospective study of 34492 participants shows an inverse association between (+)-catechin intake and coronary heart disease. The effects of (+)-catechin on atherosclerosis and associated risk factors are poorly understood and are investigated. METHODS AND RESULTS: (+)-Catechin attenuates reactive oxygen species production in human macrophages, endothelial cells and vascular smooth muscle cells, chemokine-driven monocytic migration, and proliferation of human macrophages and their expression of several pro-atherogenic genes. (+)-Catechin also improves oxidized LDL-mediated mitochondrial membrane depolarization in endothelial cells and attenuates growth factor-induced smooth muscle cell migration. In C57BL/6J mice fed high fat diet (HFD) for 3 weeks, (+)-catechin attenuates plasma levels of triacylglycerol and interleukin (IL)-1ß and IL-2, produces anti-atherogenic changes in liver gene expression, and reduces levels of white blood cells, myeloid-derived suppressor cells, Lin- Sca+ c-Kit+ cells, and common lymphoid progenitor cells within the bone marrow. In LDL receptor deficient mice fed HFD for 12 weeks, (+)-catechin attenuates atherosclerotic plaque burden and inflammation with reduced macrophage content and increased markers of plaque stability; smooth muscle cell and collagen content. CONCLUSION: This study provides novel, detailed insights into the cardio-protective actions of (+)-catechin together with underlying molecular mechanisms and supports further assessments of its beneficial effects in human trials.


Assuntos
Aterosclerose , Catequina , Placa Aterosclerótica , Humanos , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Catequina/farmacologia , Catequina/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Camundongos Knockout , Aterosclerose/metabolismo , Inflamação/metabolismo , Receptores de LDL/metabolismo , Fatores de Risco
2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902113

RESUMO

Aging and metabolic syndrome are associated with neurodegenerative pathologies including Alzheimer's disease (AD) and there is growing interest in the prophylactic potential of probiotic bacteria in this area. In this study, we assessed the neuroprotective potential of the Lab4P probiotic consortium in both age and metabolically challenged 3xTg-AD mice and in human SH-SY5Y cell culture models of neurodegeneration. In mice, supplementation prevented disease-associated deteriorations in novel object recognition, hippocampal neurone spine density (particularly thin spines) and mRNA expression in hippocampal tissue implying an anti-inflammatory impact of the probiotic, more notably in the metabolically challenged setting. In differentiated human SH-SY5Y neurones challenged with ß-Amyloid, probiotic metabolites elicited a neuroprotective capability. Taken together, the results highlight Lab4P as a potential neuroprotective agent and provide compelling support for additional studies in animal models of other neurodegenerative conditions and human studies.


Assuntos
Doença de Alzheimer , Neuroblastoma , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos , Neuroblastoma/patologia , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Cognição , Modelos Animais de Doenças
3.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835055

RESUMO

Probiotic bacteria have many protective effects against inflammatory disorders, though the mechanisms underlying their actions are poorly understood. The Lab4b consortium of probiotics contains four strains of lactic acid bacteria and bifidobacteria that are reflective of the gut of newborn babies and infants. The effect of Lab4b on atherosclerosis, an inflammatory disorder of the vasculature, has not yet been determined and was investigated on key processes associated with this disease in human monocytes/macrophages and vascular smooth muscle cells in vitro. The Lab4b conditioned medium (CM) attenuated chemokine-driven monocytic migration, monocyte/macrophage proliferation, uptake of modified LDL and macropinocytosis in macrophages together with the proliferation and platelet-derived growth factor-induced migration of vascular smooth muscle cells. The Lab4b CM also induced phagocytosis in macrophages and cholesterol efflux from macrophage-derived foam cells. The effect of Lab4b CM on macrophage foam cell formation was associated with a decrease in the expression of several key genes implicated in the uptake of modified LDL and induced expression of those involved in cholesterol efflux. These studies reveal, for the first time, several anti-atherogenic actions of Lab4b and strongly implicate further studies in mouse models of the disease in vivo and in clinical trials.


Assuntos
Aterosclerose , Probióticos , Animais , Camundongos , Recém-Nascido , Humanos , Macrófagos/metabolismo , Células Espumosas/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo
4.
BMC Microbiol ; 23(1): 48, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849905

RESUMO

The use of flow cytometry to enumerate microorganisms is gaining traction over the traditional plate count technique on the basis of superior accuracy, precision and time-to-result. Here, we assessed the suitability of live/dead flow cytometry for the enumeration of mixed populations of probiotic bacteria (L. acidophilus, L. paracasei, L. plantarum, L. salivarius, B. lactis and B. bifidum) whilst comparing outcomes with plate counting. Using a novel gating strategy designed specifically for the enumeration of mixed populations, the application of flow cytometry resulted in the detection of higher numbers of viable bacteria with a greater level of repeatability than plate counting (RSD of 6.82 and 13.14% respectively). Across all multi-species blends tested, viable cell input was more accurately recovered by flow cytometry (101.8 ± 6.95%) than plate counts (81.37 ± 16.03%). However, when certain probiotic mixtures contained preparations with high numbers of non-viable cells in their total population, flow cytometry had the potential for overestimation of the viable population. Nevertheless, the comparative plate counts of these mixtures were low and variable, thus supporting the use of flow cytometry for the enumeration of viable bacteria in mixed populations.


Assuntos
Bifidobacterium bifidum , Probióticos , Citometria de Fluxo , Lactobacillus acidophilus
5.
Front Neurosci ; 16: 843105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685773

RESUMO

Brain degenerative disorders such as Alzheimer's disease (AD) can be exacerbated by aberrant metabolism. Supplementation with probiotic bacteria is emerging as a promising preventative strategy for both neurodegeneration and metabolic syndrome. In this study, we assess the impact of the Lab4b probiotic consortium on (i) cognitive and pathological markers of AD progression and (ii) metabolic status in 3xTg-AD mice subjected to metabolic challenge with a high fat diet. The group receiving the probiotic performed better in the novel object recognition test and displayed higher hippocampal neuronal spine density than the control group at the end of the 12 weeks intervention period. These changes were accompanied by differences in localised (brain) and systemic anti-inflammatory responses that favoured the Probiotic group together with the prevention of diet induced weight gain and hypercholesterolaemia and the modulation of liver function. Compositional differences between the faecal microbiotas of the study groups included a lower Firmicutes:Bacteroidetes ratio and less numbers of viable yeast in the Probiotic group compared to the Control. The results illustrate the potential of the Lab4b probiotic as a neuroprotective agent and encourage further studies with human participants.

6.
Front Nutr ; 8: 778289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901123

RESUMO

The anti-inflammatory and cholesterol lowering capabilities of probiotic bacteria highlight them as potential prophylactics against chronic inflammatory diseases, particularly cardiovascular disease. Previous studies in silico, in vitro, and in vivo suggest that the Lab4 probiotic consortium may harbour such capabilities and in the current study, we assessed plasma levels of cytokines/chemokines, short chain fatty acids and lipids and faecal levels of bile acids in a subpopulation of healthy Wistar rats included in 90-day repeat dose oral toxicity study. In the rats receiving Lab4, circulating levels of pro-inflammatory interleukin-6, tumour necrosis factor-α and keratinocyte chemoattractant/growth regulated oncogene were significantly lower compared to the control group demonstrating a systemic anti-inflammatory effect. These changes occurred alongside significant reductions in plasma low density lipoprotein cholesterol and increases in faecal bile acid excretion implying the ability to lower circulating cholesterol via the deconjugation of intestinal bile acids. Correlative analysis identified significant associations between plasma tumour necrosis factor-α and the plasma total cholesterol:high density lipoprotein cholesterol ratio and faecal levels of bifidobacteria in the Lab4 rats. Together, these data highlight Lab4 supplementation as a holistic approach to CVD prevention and encourages further studies in humans.

7.
Mol Nutr Food Res ; 65(17): e2100214, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216185

RESUMO

SCOPE: Previous studies show that Lab4 probiotic consortium plus Lactobacillus plantarum CUL66 (Lab4P) reduces diet-induced weight gain and plasma cholesterol levels in C57BL/6J mice fed a high fat diet (HFD). The effect of Lab4P on atherosclerosis is not known and is therefore investigated. METHODS AND RESULTS: Atherosclerosis-associated parameters are analyzed in LDL receptor deficient mice fed HFD for 12 weeks alone or supplemented with Lab4P. Lab4P increases plasma HDL and triglyceride levels and decreases LDL/VLDL levels. Lab4P also reduces plaque burden and content of lipids and macrophages, indicative of dampened inflammation, and increases smooth muscle cell content, a marker of plaque stabilization. Atherosclerosis arrays show that Lab4P alters the liver expression of 19 key disease-associated genes. Lab4P also decreases the frequency of macrophages and T-cells in the bone marrow. In vitro assays using conditioned media from probiotic bacteria demonstrates attenuation of several atherosclerosis-associated processes in vitro such as chemokine-driven monocytic migration, proliferation of monocytes and macrophages, foam cell formation and associated changes in expression of key genes, and proliferation and migration of vascular smooth muscle cells. CONCLUSION: This study provides new insights into the anti-atherogenic actions of Lab4P together with the underlying mechanisms and supports further assessments in human trials.


Assuntos
Aterosclerose/terapia , Fígado/fisiologia , Placa Aterosclerótica/terapia , Probióticos/farmacologia , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células da Medula Óssea , Colesterol/sangue , Meios de Cultivo Condicionados/farmacologia , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Lactobacillus plantarum , Lipídeos/sangue , Masculino , Camundongos Mutantes , Tamanho do Órgão , Placa Aterosclerótica/patologia , Receptores de LDL/genética , Baço/crescimento & desenvolvimento
8.
Food Funct ; 12(8): 3657-3671, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33900312

RESUMO

Atherosclerosis, an inflammatory disorder of the vasculature and the underlying cause of cardiovascular disease, is responsible for one in three global deaths. Consumption of active food ingredients such as omega-3 polyunsaturated fatty acids, flavanols and phytosterols has many beneficial effects on cardiovascular disease. However, their combined actions on the risk factors for atherosclerosis remains poorly understood. We have previously shown that a formulation containing each of these active components at physiologically relevant doses modulated several monocyte/macrophage processes associated with atherosclerosis in vitro, including inhibition of cytokine-induced pro-inflammatory gene expression, chemokine-driven monocyte migration, expression of M1 phenotype markers, and promotion of cholesterol efflux. The objectives of the present study were to investigate whether the protective actions of the formulation extended in vivo and to delineate the potential underlying mechanisms. The formulation produced several favourable changes, including higher plasma levels of HDL and reduced levels of macrophages and myeloid-derived suppressor cells in the bone marrow. The mRNA expression of liver-X-receptor-α, peroxisome proliferator-activated receptor-γ and superoxide dismutase-1 was induced in the liver and that of interferon-γ and the chemokine (C-X-C motif) ligand 1 decreased, thereby suggesting the potential mechanisms for many beneficial effects. Other changes were also observed such as increased plasma levels of triglycerides and lipid peroxidation that may reflect potential activation of brown fat. This study provides new insights into the protective actions and the potential underlying mechanisms of the formulation in vivo, particularly in relation to risk factors together with changes in systemic inflammation and hepatic lipid alterations associated with atherosclerosis and metabolic syndrome, and supports further assessments in human trials.


Assuntos
Cardiotônicos/farmacologia , Doença da Artéria Coronariana/prevenção & controle , Animais , Cardiotônicos/administração & dosagem , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/administração & dosagem , Flavanonas/administração & dosagem , Alimento Funcional , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fitosteróis/administração & dosagem , Fatores de Risco
9.
Gut Microbes ; 13(1): 1-9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33764850

RESUMO

Gut microbiome manipulation to alter the gut-lung axis may potentially protect humans against respiratory infections, and clinical trials of probiotics show promise in this regard in healthy adults and children. However, comparable studies are lacking in overweight/obese people, who have increased risks in particular of viral upper respiratory tract infections (URTI). This Addendum further analyses our recent placebo-controlled trial of probiotics in overweight/obese people (focused initially on weight loss) to investigate the impact of probiotics upon the occurrence of URTI symptoms. As well as undergoing loss of weight and improvement in certain metabolic parameters, study participants taking probiotics experienced a 27% reduction in URTI symptoms versus control, with those ≥45 years or BMI ≥30 kg/m2 experiencing greater reductions. This symptom reduction is apparent within 2 weeks of probiotic use. Gut microbiome diversity remained stable throughout the study in probiotic-treated participants. Our data provide support for further trials to assess the potential role of probiotics in preventing viral URTI (and possibly also COVID-19), particularly in overweight/obese people.


Assuntos
Obesidade/complicações , Sobrepeso/complicações , Probióticos/uso terapêutico , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/terapia , Adulto , Idoso , Método Duplo-Cego , Microbioma Gastrointestinal , Humanos , Pessoa de Meia-Idade , Pandemias , Autorrelato
10.
Microbiome ; 9(1): 45, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593429

RESUMO

BACKGROUND: Graves' disease (GD) is an autoimmune condition in which autoantibodies to the thyrotropin receptor (TSHR) cause hyperthyroidism. About 50% of GD patients also have Graves' orbitopathy (GO), an intractable disease in which expansion of the orbital contents causes diplopia, proptosis and even blindness. Murine models of GD/GO, developed in different centres, demonstrated significant variation in gut microbiota composition which correlated with TSHR-induced disease heterogeneity. To investigate whether correlation indicates causation, we modified the gut microbiota to determine whether it has a role in thyroid autoimmunity. Female BALB/c mice were treated with either vancomycin, probiotic bacteria, human fecal material transfer (hFMT) from patients with severe GO or ddH2O from birth to immunization with TSHR-A subunit or beta-galactosidase (ßgal; age ~ 6 weeks). Incidence and severity of GD (TSHR autoantibodies, thyroid histology, thyroxine level) and GO (orbital fat and muscle histology), lymphocyte phenotype, cytokine profile and gut microbiota were analysed at sacrifice (~ 22 weeks). RESULTS: In ddH2O-TSHR mice, 84% had pathological autoantibodies, 67% elevated thyroxine, 77% hyperplastic thyroids and 70% orbital pathology. Firmicutes were increased, and Bacteroidetes reduced relative to ddH2O-ßgal; CCL5 was increased. The random forest algorithm at the genus level predicted vancomycin treatment with 100% accuracy but 74% and 70% for hFMT and probiotic, respectively. Vancomycin significantly reduced gut microbiota richness and diversity compared with all other groups; the incidence and severity of both GD and GO also decreased; reduced orbital pathology correlated positively with Akkermansia spp. whilst IL-4 levels increased. Mice receiving hFMT initially inherited their GO donors' microbiota, and the severity of induced GD increased, as did the orbital brown adipose tissue volume in TSHR mice. Furthermore, genus Bacteroides, which is reduced in GD patients, was significantly increased by vancomycin but reduced in hFMT-treated mice. Probiotic treatment significantly increased CD25+ Treg cells in orbital draining lymph nodes but exacerbated induced autoimmune hyperthyroidism and GO. CONCLUSIONS: These results strongly support a role for the gut microbiota in TSHR-induced disease. Whilst changes to the gut microbiota have a profound effect on quantifiable GD endocrine and immune factors, the impact on GO cellular changes is more nuanced. The findings have translational potential for novel, improved treatments. Video abstract.


Assuntos
Microbioma Gastrointestinal , Oftalmopatia de Graves/microbiologia , Animais , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Oftalmopatia de Graves/imunologia , Oftalmopatia de Graves/metabolismo , Oftalmopatia de Graves/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C
12.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2538-2550, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31202985

RESUMO

Atherosclerosis and its complications are responsible for one in three global deaths. Nutraceuticals show promise in the prevention and treatment of atherosclerosis but require an indepth understanding of the mechanisms underlying their actions. A previous study showed that the omega-6 fatty acid, dihomo-γ-linolenic acid (DGLA), attenuated atherosclerosis in the apolipoprotein E deficient mouse model system. However, the mechanisms underlying such protective effects of DGLA are poorly understood and were therefore investigated. We show that DGLA attenuates chemokine-driven monocytic migration together with foam cell formation and the expression of key pro-atherogenic genes induced by three pro-inflammatory cytokines in human macrophages. The effect of DGLA on interferon-γ signaling was mediated via inhibition of signal transducer and activator of transcription-1 phosphorylation on serine 727. In relation to anti-foam cell action, DGLA inhibits modified LDL uptake by both macropinocytosis and receptor-mediated endocytosis, the latter by reduction in expression of two key scavenger receptors (SR-A and CD36), and stimulates cholesterol efflux from foam cells. DGLA also improves macrophage mitochondrial bioenergetic profile by decreasing proton leak. Gamma-linolenic acid and prostaglandin E1, upstream precursor and key metabolite respectively of DGLA, also acted in an anti-atherogenic manner. The actions of DGLA extended to other key atherosclerosis-associated cell types with attenuation of endothelial cell proliferation and migration of smooth muscle cells in response to platelet-derived growth factor. This study provides novel insights into the molecular mechanisms underlying the anti-atherogenic actions of DGLA and supports further assessments on its protective effects on plaque regression in vivo and in human trials.


Assuntos
Ácido 8,11,14-Eicosatrienoico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Células Espumosas/citologia , Células Espumosas/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monócitos/citologia
13.
Sci Rep ; 6: 34368, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27687241

RESUMO

The anti-atherogenic cytokine TGF-ß inhibits macrophage foam cell formation by suppressing the expression of key genes implicated in the uptake of modified lipoproteins. We have previously shown a critical role for p38 MAPK and JNK in the TGF-ß-mediated regulation of apolipoprotein E expression in human monocytes. However, the roles of these two MAPK pathways in the control of expression of key genes involved in the uptake of modified lipoproteins in human macrophages is poorly understood and formed the focus of this study. TGF-ß activated both p38 MAPK and JNK, and knockdown of p38 MAPK or c-Jun, a key downstream target of JNK action, demonstrated their requirement in the TGF-ß-inhibited expression of several key genes implicated in macrophage lipoprotein uptake. The potential role of c-Jun and specific co-activators in the action of TGF-ß was investigated further by studies on the lipoprotein lipase gene. c-Jun did not directly interact with the minimal promoter region containing the TGF-ß response elements and a combination of transient transfection and knock down assays revealed an important role for SRC-1. These studies provide novel insights into the mechanisms underlying the TGF-ß-mediated inhibition of macrophage gene expression associated with the control of cholesterol homeostasis.

14.
PLoS One ; 11(3): e0151057, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26950833

RESUMO

INTRODUCTION: Atherosclerosis is the underlying cause of cardiovascular disease that leads to more global mortalities each year than any other ailment. Consumption of active food ingredients such as phytosterols, omega-3 polyunsaturated fatty acids and flavanols are known to impart beneficial effects on cardiovascular disease although the combined actions of such agents in atherosclerosis is poorly understood. The aim of this study was to screen a nutritional supplement containing each of these active components for its anti-atherosclerotic effect on macrophages in vitro. RESULTS: The supplement attenuated the expression of intercellular adhesion molecule-1 and macrophage chemoattractant protein-1 in human and murine macrophages at physiologically relevant doses. The migratory capacity of human monocytes was also hindered, possibly mediated by eicosapentaenoic acid and catechin, while the ability of foam cells to efflux cholesterol was improved. The polarisation of murine macrophages towards a pro-inflammatory phenotype was also attenuated by the supplement. CONCLUSION: The formulation was able to hinder multiple key steps of atherosclerosis development in vitro by inhibiting monocyte recruitment, foam cell formation and macrophage polarisation towards an inflammatory phenotype. This is the first time a combination these ingredients has been shown to elicit such effects and supports its further study in preclinical in vivo models.


Assuntos
Aterosclerose/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Flavonóis/farmacologia , Fitosteróis/farmacologia , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Colesterol/metabolismo , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/genética , Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
J Cell Physiol ; 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25953328

RESUMO

The transcription of the ATP-binding cassette transporter A1 (ABCA1) gene, which plays a key anti-atherogenic role, is known to be induced by agonists of liver X receptors (LXRs). LXRs form obligate heterodimers with retinoid X receptors (RXRs) and interact with their recognition sequences in the regulatory regions of key genes implicated in the control of cholesterol, fatty acid and glucose homeostasis. We have previously shown a novel role for c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K) in the LXRs-mediated induction of macrophage gene expression. Protein kinase C (PKC) is often found to regulate the action of nuclear receptors and cross talk between this kinase family and JNK and/or PI3K has been shown in several settings. We have therefore investigated a potential role for PKC in the action of LXR/RXR agonist 22-(R)-hydroxycholesterol (22-(R)-HC)/9-cis-retinoic acid (9cRA) in THP-1 macrophages, including the induction of ABCA1 expression. The pan PKC inhibitor bisindoylmaleimide was found to attenuate the induction of ABCA1 protein expression, the activation of the JNK signaling pathway and the stimulation of activator protein-1 (AP-1) DNA binding activity in macrophages treated with 22-(R)-HC and 9cRA. The role of PKC in the action of these ligands was confirmed further by the use of more isotype-specific inhibitors. These studies therefore reveal a potentially important role for PKC in the action of 22-(R)-HC and 9cRA in human macrophages. This article is protected by copyright. All rights reserved.

16.
J Cell Biochem ; 116(9): 2032-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25752819

RESUMO

The transcription of the ATP-binding cassette transporter A1 (ABCA1) gene, which plays a key anti-atherogenic role, is known to be induced by agonists of liver X receptors (LXRs). LXRs form obligate heterodimers with retinoid X receptors (RXRs) and interact with their recognition sequences in the regulatory regions of key genes implicated in the control of cholesterol, fatty acid and glucose homeostasis. We have previously shown a novel role for c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K) in the LXRs-mediated induction of macrophage gene expression. Protein kinase C (PKC) is often found to regulate the action of nuclear receptors and cross talk between this kinase family and JNK and/or PI3K has been shown in several settings. We have, therefore, investigated a potential role for PKC in the action of LXR/RXR agonist 22-(R)-hydroxycholesterol (22-(R)-HC)/9-cis-retinoic acid (9cRA) in THP-1 macrophages, including the induction of ABCA1 expression. The pan PKC inhibitor bisindoylmaleimide was found to attenuate the induction of ABCA1 protein expression, the activation of the JNK signaling pathway and the stimulation of activator protein-1 (AP-1) DNA binding activity in macrophages treated with 22-(R)-HC and 9cRA. The role of PKC in the action of these ligands was confirmed further by the use of more isotype-specific inhibitors. These studies, therefore, reveal a potentially important role for PKC in the action of 22-(R)-HC and 9cRA in human macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Hidroxicolesteróis/farmacologia , Macrófagos/efeitos dos fármacos , Proteína Quinase C/metabolismo , Tretinoína/farmacologia , Transportador 1 de Cassete de Ligação de ATP/antagonistas & inibidores , Alitretinoína , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Receptores X do Fígado , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/citologia , Maleimidas/farmacologia , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/metabolismo , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo
17.
Lipids ; 50(3): 253-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25663263

RESUMO

The transformation of macrophages into lipid-loaded foam cells is a critical early event in the pathogenesis of atherosclerosis. Both receptor-mediated uptake of modified LDL, mediated primarily by scavenger receptors-A (SR-A) and CD36 along with other proteins such as lipoprotein lipase (LPL), and macropinocytosis contribute to macrophage foam cell formation. The signaling pathways that are involved in the control of foam cell formation are not fully understood. In this study, we have investigated the role of phosphoinositide 3-kinase (PI3K) in relation to foam cell formation in human macrophages. The pan PI3K inhibitor LY294002 attenuated the uptake of modified LDL and macropinocytosis, as measured by Lucifer Yellow uptake, by human macrophages. In addition, the expression of SR-A, CD36 and LPL was attenuated by LY294002. The use of isoform-selective PI3K inhibitors showed that PI3K-ß, -γ and -δ were all required for the expression of SR-A and CD36 whereas only PI3K-γ was necessary in the case of LPL. These studies reveal a pivotal role of PI3K in the control of macrophage foam cell formation and provide further evidence for their potential as therapeutic target against atherosclerosis.


Assuntos
Aterosclerose/patologia , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Aterosclerose/metabolismo , Cromonas/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Morfolinas/farmacologia
18.
Cytokine ; 64(1): 357-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23791479

RESUMO

A key event during the formation of lipid-rich foam cells during the progression of atherosclerosis is the uptake of modified low-density lipoproteins (LDL) by macrophages in response to atherogenic mediators in the arterial intima. In addition to scavenger receptor-dependent uptake of LDL, macropinocytosis is known to facilitate the uptake of LDL through the constitutive and passive internalization of large quantities of extracellular solute. In this study we confirm the ability of macropinocytosis to facilitate the uptake of modified LDL by human macrophages and show its modulation by TGF-ß, IFN-γ, IL-17A and IL-33. Furthermore we show that the TGF-ß-mediated inhibition of macropinocytosis is a Smad-2/-3-independent process.


Assuntos
Aterosclerose/patologia , Células Espumosas/patologia , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucinas/metabolismo , Pinocitose/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Aterosclerose/imunologia , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Citocalasina D/farmacologia , Células Espumosas/imunologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Inflamação/imunologia , Interleucina-33 , Lipoproteínas LDL/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
19.
Matrix Biol ; 31(7-8): 373-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23123404

RESUMO

The ubiquitous mammalian extracellular matrix glycosaminoglycan hyaluronan (HA) plays a pivotal role in the regulation of cell phenotype in fibrosis and scarring. Transforming growth factor-beta 1 (TGF-ß1) and interleukin-1 beta (IL-1ß) up-regulate hyaluronan synthase (HAS) 1 and HAS2 in dermal fibroblasts and renal proximal tubular epithelial cells, and subsequent HA synthesis regulates cell phenotype. In the present study, we investigated the mechanism of HAS1 transcriptional up-regulation in response to these cytokines. We used 5'-rapid amplification of cDNA ends analysis to identify the 5' end of HAS1 transcripts, resulting in an increase of 26 nucleotides to the HAS1 exon 1 sequence of reference sequence NM_001523. Constitutive luciferase activity of upstream DNA sequences was shown in luciferase reporter assays, but our reporter vector signals were refractory to the addition of TGF-ß1 and IL-1ß. Using siRNAs to knockdown transcription factor mRNAs, we showed that TGF-ß1 up-regulation of HAS1 transcription was mediated via Smad3 but not Smad2, while HAS1 induction by IL-1ï€ ß was Sp3, not Sp1, dependent.


Assuntos
Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica/genética , Glucuronosiltransferase/genética , Regiões Promotoras Genéticas/genética , Proteína Smad3/metabolismo , Fator de Transcrição Sp3/metabolismo , Sequência de Bases , Primers do DNA/genética , DNA Complementar/genética , Eletroforese em Gel de Ágar , Regulação da Expressão Gênica/fisiologia , Humanos , Hialuronan Sintases , Interleucina-1beta/metabolismo , Luciferases , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Interferência de RNA , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
20.
Biochim Biophys Acta ; 1822(10): 1608-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22705205

RESUMO

The anti-atherogenic cytokine, TGF-ß, plays a key role during macrophage foam cell formation by modulating the expression of key genes involved in the control of cholesterol homeostasis. Unfortunately, the molecular mechanisms underlying these actions of TGF-ß remain poorly understood. In this study we examine the effect of TGF-ß on macrophage cholesterol homeostasis and delineate the role of Smads-2 and -3 during this process. Western blot analysis showed that TGF-ß induces a rapid phosphorylation-dependent activation of Smad-2 and -3 in THP-1 and primary human monocyte-derived macrophages. Small interfering RNA-mediated knockdown of Smad-2/3 expression showed that the TGF-ß-mediated regulation of key genes implicated in the uptake of modified low density lipoproteins and the efflux of cholesterol from foam cells was Smad-dependent. Additionally, through the use of virally delivered Smad-2 and/or Smad-3 short hairpin RNA, we demonstrate that TGF-ß inhibits the uptake of modified LDL by macrophages through a Smad-dependent mechanism and that the TGF-ß-mediated regulation of CD36, lipoprotein lipase and scavenger receptor-A gene expression was dependent on Smad-2. These studies reveal a crucial role for Smad signaling, particularly Smad-2, in the inhibition of foam cell formation by TGF-ß through the regulation of expression of key genes involved in the control of macrophage cholesterol homeostasis.


Assuntos
Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células Cultivadas , Colesterol/genética , Colesterol/metabolismo , Células Espumosas/metabolismo , Expressão Gênica , Homeostase , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Lipoproteínas LDL/genética , Fosforilação , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA