Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38826385

RESUMO

We sought to examine how resistance exercise (RE), cycling exercise, and disuse atrophy affect myosin heavy chain (MyHC) protein fragmentation in humans. In the first study (1boutRE), younger adult men (n=8; 5±2 years of RE experience) performed a lower body RE bout with vastus lateralis (VL) biopsies obtained immediately before, 3-, and 6-hours post-exercise. In the second study (10weekRT), VL biopsies were obtained in untrained younger adults (n=36, 18 men and 18 women) before and 24 hours (24h) after their first/naïve RE bout. These participants also engaged in 10 weeks (24 sessions) of resistance training and donated VL biopsies before and 24h after their last RE bout. VL biopsies were also examined from a third acute cycling study (n=7) and a fourth study involving two weeks of leg immobilization (n=20, 15 men and 5 women) to determine how MyHC fragmentation was affected. In the 1boutRE study, the fragmentation of all MyHC isoforms (MyHCTotal) increased 3 hours post-RE (~ +200%, p=0.018) and returned to pre-exercise levels by 6 hours post-RE. Immunoprecipitation of MyHCTotal revealed ubiquitination levels remained unaffected at the 3- and 6-hour post-RE time points. Interestingly, a greater increase in magnitude for MyHC type IIa versus I isoform fragmentation occurred 3-hours post-RE (8.6±6.3-fold versus 2.1±0.7-fold, p=0.018). In all 10weekRT participants, the first/naïve and last RE bouts increased MyHCTotal fragmentation 24h post-RE (+65% and +36%, respectively; p<0.001); however, the last RE bout response was attenuated compared to the first bout (p=0.045). The first/naïve bout response was significantly elevated in females only (p<0.001), albeit females also demonstrated a last bout attenuation response (p=0.002). Although an acute cycling bout did not alter MyHCTotal fragmentation, ~8% VL atrophy with two weeks of leg immobilization led to robust MyHCTotal fragmentation (+108%, p<0.001), and no sex-based differences were observed. In summary, RE and disuse atrophy increase MyHC protein fragmentation. A dampened response with 10 weeks of resistance training, and more refined responses in well-trained men, suggest this is an adaptive process. Given the null polyubiquitination IP findings, more research is needed to determine how MyHC fragments are processed. Moreover, further research is needed to determine how aging and disease-associated muscle atrophy affect these outcomes, and whether MyHC fragmentation is a viable surrogate for muscle protein turnover rates.

2.
FASEB J ; 38(8): e23621, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38651653

RESUMO

Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.


Assuntos
Senescência Celular , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Senescência Celular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Biomarcadores/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Adulto , Músculo Quadríceps/metabolismo , Músculo Quadríceps/inervação
3.
Front Physiol ; 14: 1279170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877099

RESUMO

We examined how set-volume equated resistance training using either the back squat (SQ) or hip thrust (HT) affected hypertrophy and various strength outcomes. Untrained college-aged participants were randomized into HT (n = 18) or SQ (n = 16) groups. Surface electromyograms (sEMG) from the right gluteus maximus and medius muscles were obtained during the first training session. Participants completed 9 weeks of supervised training (15-17 sessions), before and after which gluteus and leg muscle cross-sectional area (mCSA) was assessed via magnetic resonance imaging. Strength was also assessed prior to and after the training intervention via three-repetition maximum (3RM) testing and an isometric wall push test. Gluteus mCSA increases were similar across both groups. Specifically, estimates [(-) favors HT (+) favors SQ] modestly favored the HT versus SQ for lower [effect ±SE, -1.6 ± 2.1 cm2; CI95% (-6.1, 2.0)], mid [-0.5 ± 1.7 cm2; CI95% (-4.0, 2.6)], and upper [-0.5 ± 2.6 cm2; CI95% (-5.8, 4.1)] gluteal mCSAs but with appreciable variance. Gluteus medius + minimus [-1.8 ± 1.5 cm2; CI95% (-4.6, 1.4)] and hamstrings [0.1 ± 0.6 cm2; CI95% (-0.9, 1.4)] mCSA demonstrated little to no growth with small differences between groups. mCSA changes were greater in SQ for the quadriceps [3.6 ± 1.5 cm2; CI95% (0.7, 6.4)] and adductors [2.5 ± 0.7 cm2; CI95% (1.2, 3.9)]. Squat 3RM increases favored SQ [14 ± 2 kg; CI95% (9, 18),] and hip thrust 3RM favored HT [-26 ± 5 kg; CI95% (-34, -16)]. 3RM deadlift [0 ± 2 kg; CI95% (-4, 3)] and wall push strength [-7 ± 12N; CI95% (-32, 17)] similarly improved. All measured gluteal sites showed greater mean sEMG amplitudes during the first bout hip thrust versus squat set, but this did not consistently predict gluteal hypertrophy outcomes. Squat and hip thrust training elicited similar gluteal hypertrophy, greater thigh hypertrophy in SQ, strength increases that favored exercise allocation, and similar deadlift and wall push strength increases.

4.
Front Physiol ; 14: 1281702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841321

RESUMO

Although several reports have hypothesized that exercise may increase skeletal muscle protein lactylation, empirical evidence in humans is lacking. Thus, we adopted a multi-faceted approach to examine if acute and subchronic resistance training (RT) altered skeletal muscle protein lactylation levels. In mice, we also sought to examine if surgical ablation-induced plantaris hypertrophy coincided with increases in muscle protein lactylation. To examine acute responses, participants' blood lactate concentrations were assessed before, during, and after eight sets of an exhaustive lower body RT bout (n = 10 trained college-aged men). Vastus lateralis biopsies were also taken before, 3-h post, and 6-h post-exercise to assess muscle protein lactylation. To identify training responses, another cohort of trained college-aged men (n = 14) partook in 6 weeks of lower-body RT (3x/week) and biopsies were obtained before and following the intervention. Five-month-old C57BL/6 mice were subjected to 10 days of plantaris overload (OV, n = 8) or served as age-matched sham surgery controls (Sham, n = 8). Although acute resistance training significantly increased blood lactate responses ∼7.2-fold (p < 0.001), cytoplasmic and nuclear protein lactylation levels were not significantly altered at the post-exercise time points, and no putative lactylation-dependent mRNA was altered following exercise. Six weeks of RT did not alter cytoplasmic protein lactylation (p = 0.800) despite significantly increasing VL muscle size (+3.5%, p = 0.037), and again, no putative lactylation-dependent mRNA was significantly affected by training. Plantaris muscles were larger in OV versus Sham mice (+43.7%, p < 0.001). However, cytoplasmic protein lactylation was similar between groups (p = 0.369), and nuclear protein lactylation was significantly lower in OV versus Sham mice (p < 0.001). The current null findings, along with other recent null findings in the literature, challenge the thesis that lactate has an appreciable role in promoting skeletal muscle hypertrophy.

5.
Exp Physiol ; 108(10): 1268-1281, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589512

RESUMO

We recently reported that vastus lateralis (VL) cross-sectional area (CSA) increases after 7 weeks of resistance training (RT, 2 days/week), with declines occurring following 7 weeks of subsequent treadmill high-intensity interval training (HIIT) (3 days/week). Herein, we examined the effects of this training paradigm on skeletal muscle proteolytic markers. VL biopsies were obtained from 11 untrained college-aged males at baseline (PRE), after 7 weeks of RT (MID), and after 7 weeks of HIIT (POST). Tissues were analysed for proteolysis markers, and in vitro experiments were performed to provide additional insights. Atrogene mRNAs (TRIM63, FBXO32, FOXO3A) were upregulated at POST versus both PRE and MID (P < 0.05). 20S proteasome core protein abundance increased at POST versus PRE (P = 0.031) and MID (P = 0.049). 20S proteasome activity, and protein levels for calpain-2 and Beclin-1 increased at MID and POST versus PRE (P < 0.05). Ubiquitinated proteins showed model significance (P = 0.019) with non-significant increases at MID and POST (P > 0.05). in vitro experiments recapitulated the training phenotype when stimulated with a hypertrophic stimulus (insulin-like growth factor 1; IGF1) followed by a subsequent AMP-activated protein kinase activator (5-aminoimidazole-4-carboxamide ribonucleotide; AICAR), as demonstrated by larger myotube diameter in IGF1-treated cells versus IGF1 followed by AICAR treatments (I+A; P = 0.017). Muscle protein synthesis (MPS) levels were also greater in IGF1-treated versus I+A myotubes (P < 0.001). In summary, the loss in RT-induced VL CSA with HIIT coincided with increases in several proteolytic markers, and sustained proteolysis may have driven this response. Moreover, while not measured in humans, we interpret our in vitro data to suggest that (unlike RT) HIIT does not stimulate MPS. NEW FINDINGS: What is the central question of this study? Determining if HIIT-induced reductions in muscle hypertrophy following a period of resistance training coincided with increases in proteolytic markers. What is the main finding and its importance? Several proteolytic markers were elevated during the HIIT training period implying that increases in muscle proteolysis may have played a role in HIIT-induced reductions in muscle hypertrophy.


Assuntos
Treinamento Intervalado de Alta Intensidade , Treinamento Resistido , Humanos , Masculino , Adulto Jovem , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Perna (Membro) , Músculo Esquelético/fisiologia , Hipertrofia/metabolismo
6.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461495

RESUMO

Purpose: We examined how set-volume equated resistance training using either the back squat (SQ) or hip thrust (HT) affected hypertrophy and various strength outcomes. Methods: Untrained college-aged participants were randomized into HT or SQ groups. Surface electromyograms (sEMG) from the right gluteus maximus and medius muscles were obtained during the first training session. Participants completed nine weeks of supervised training (15-17 sessions), before and after which we assessed muscle cross-sectional area (mCSA) via magnetic resonance imaging and strength via three-repetition maximum (3RM) testing and an isometric wall push test. Results: Glutei mCSA growth was similar across both groups. Estimates [(-) favors HT; (+) favors SQ] modestly favored the HT compared to SQ for lower [effect ± SE, -1.6 ± 2.1 cm2], mid [-0.5± 1.7 cm2], and upper [-0.5 ± 2.6 cm2], but with appreciable variance. Gluteus medius+minimus [-1.8 ± 1.5 cm2] and hamstrings [0.1 ± 0.6 cm2] mCSA demonstrated little to no growth with small differences between groups. Thigh mCSA changes were greater in SQ for the quadriceps [3.6 ± 1.5 cm2] and adductors [2.5 ± 0.7 cm2]. Squat 3RM increases favored SQ [14 ± 2.5 kg] and hip thrust 3RM favored HT [-26 ± 5 kg]. 3RM deadlift [0 ± 2 kg] and wall push strength [-7 ± 13 N] similarly improved. All measured gluteal sites showed greater mean sEMG amplitudes during the first bout hip thrust versus squat set, but this did not consistently predict gluteal hypertrophy outcomes. Conclusion: Nine weeks of squat versus hip thrust training elicited similar gluteal hypertrophy, greater thigh hypertrophy in SQ, strength increases that favored exercise allocation, and similar strength transfers to the deadlift and wall push.

7.
Cells ; 12(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980239

RESUMO

Although transcriptome profiling has been used in several resistance training studies, the associated analytical approaches seldom provide in-depth information on individual genes linked to skeletal muscle hypertrophy. Therefore, a secondary analysis was performed herein on a muscle transcriptomic dataset we previously published involving trained college-aged men (n = 11) performing two resistance exercise bouts in a randomized and crossover fashion. The lower-load bout (30 Fail) consisted of 8 sets of lower body exercises to volitional fatigue using 30% one-repetition maximum (1 RM) loads, whereas the higher-load bout (80 Fail) consisted of the same exercises using 80% 1 RM loads. Vastus lateralis muscle biopsies were collected prior to (PRE), 3 h, and 6 h after each exercise bout, and 58 genes associated with skeletal muscle hypertrophy were manually interrogated from our prior microarray data. Select targets were further interrogated for associated protein expression and phosphorylation induced-signaling events. Although none of the 58 gene targets demonstrated significant bout x time interactions, ~57% (32 genes) showed a significant main effect of time from PRE to 3 h (15↑ and 17↓, p < 0.01), and ~26% (17 genes) showed a significant main effect of time from PRE to 6 h (8↑ and 9↓, p < 0.01). Notably, genes associated with the myostatin (9 genes) and mammalian target of rapamycin complex 1 (mTORC1) (9 genes) signaling pathways were most represented. Compared to mTORC1 signaling mRNAs, more MSTN signaling-related mRNAs (7 of 9) were altered post-exercise, regardless of the bout, and RHEB was the only mTORC1-associated mRNA that was upregulated following exercise. Phosphorylated (phospho-) p70S6K (Thr389) (p = 0.001; PRE to 3 h) and follistatin protein levels (p = 0.021; PRE to 6 h) increased post-exercise, regardless of the bout, whereas phospho-AKT (Thr389), phospho-mTOR (Ser2448), and myostatin protein levels remained unaltered. These data continue to suggest that performing resistance exercise to volitional fatigue, regardless of load selection, elicits similar transient mRNA and signaling responses in skeletal muscle. Moreover, these data provide further evidence that the transcriptional regulation of myostatin signaling is an involved mechanism in response to resistance exercise.


Assuntos
Músculo Esquelético , Treinamento Resistido , Humanos , Masculino , Adulto Jovem , Expressão Gênica , Hipertrofia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miostatina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Nutrients ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807922

RESUMO

Many studies have evaluated the effects of resistance training (RT) and protein intake to attenuate the age-related loss of skeletal muscle. However, the effects of graded protein intake with conjunctive RT in older adults are unclear. Older adults (n = 18) performed 10 weeks of whole-body RT with progressions to intensity and volume while consuming either a constant protein (CP) diet (0.8−1.0 g/kg/d) with no protein supplement or a graded protein (GP) diet progressing from 0.8 g/kg/d at week 1 to 2.2 g/kg/d at week 10 with a whey protein supplement. Data were collected prior to commencement of the RT protocol (PRE), after week 5 (MID), and after week 10 (POST). Dual Energy X-ray Absorptiometry derived lean/soft tissue mass, ultrasonography derived muscle thickness, and a proxy of muscle quality were taken at PRE and POST, while isokinetic dynamometry derived peak torque were taken at PRE, MID, and POST. This study demonstrated the feasibility of the RT protocol (attendance = 96%), and protein intake protocol (CP in range all weeks; GP deviation from prescribed = 7%). Peak torque, muscle quality scores, and appendicular lean/soft tissue mass demonstrated the main effects of time (p < 0.05) while no other main effects of time or group * time interactions were seen for any measure. In conclusion, RT improved appendicular lean/soft tissue mass, peak torque, and muscle quality, with no differential effects of graded or constant protein intake.


Assuntos
Treinamento Resistido , Absorciometria de Fóton , Idoso , Composição Corporal , Humanos , Força Muscular , Músculo Esquelético , Treinamento Resistido/métodos , Proteínas do Soro do Leite/farmacologia
9.
Sports (Basel) ; 9(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810526

RESUMO

The purpose of the present study was to assess the acute effects of pre-sleep consumption of isocaloric casein protein (CP), CP and whey protein (BLEND), or non-caloric control (CTRL) at a dose relative to lean body mass (LBM) on recovery following an evening lower-body resistance exercise (RE) bout. Fifteen active and previously resistance-trained males (age: 21 ± 1 years, body fat: 14.2 ± 2.7%) participated in this randomized, single-blind, crossover study. Participants performed an evening lower-body RE bout and were provided with 0.4 g/kg/LBM of whey protein (WP) supplement post-RE. A single dose of 0.6 g/kg/LBM of CP, 0.4 g/kg/LBM of CP and 0.2 g/kg/LBM WP (BLEND), or CTRL was consumed 30 min prior to sleep. Measurements of perceived recovery (visual analogue scales (VAS) for recovery, soreness, and fatigue), appetite (VAS for hunger, satiety, and desire to eat), as well as pressure-pain threshold (dolorimeter), average power, and peak torque (isokinetic dynamometry) of the right thigh muscles were assessed the following morning. Main effects of time were seen for all recovery variables (perceived recovery: F2,28 = 96.753, p < 0.001, hp2 = 0.874; perceived fatigue: F2,28 = 76.775, p < 0.001; hp2 = 0.846; perceived soreness: F2,28 = 111.967, p < 0.001; hp2 = 0.889). A main effect of supplement was only seen for perceived recovery (F2,28 = 4.869; p = 0.015; hp2 = 0.258), with recovery being 6.10 ± 2.58 mm greater in CP vs. BLEND (p = 0.033) and 7.51 ± 2.28 mm greater in CP than CTRL (p = 0.005). No main effects of supplement were seen in measures of perceived soreness, or fatigue (F2,28 ≤ 2.291; p > 0.120; hp2 ≤ 0.141). No differences between supplements were found in perceived next-morning hunger (p = 0.06), satiety (p ≥ 0.227), or desire to eat (p = 0.528). Main effects of supplement were seen between BLEND and CP vs. CTRL for measures of pain-pressure threshold at the rectus femoris (F2,28 = 9.377; p = 0.001; hp2 = 0.401), the vastus lateralis (F2,28 = 10.887; p < 0.001; hp2 = 0.437), and the vastus medialis (F2,28 = 12.113, p < 0.001; hp2 = 0.464). Values of peak torque and average power were similar between all supplement groups at 60°/sec (F1.309,18.327 ≤ 1.994; p ≥ 0.173; hp2 ≤ 0.125), 180°/s (F2,28 ≤ 1.221; p ≥ 0.310; hp2 ≤ 0.080), and 300°/sec (F2,28 ≤ 2.854; p ≥ 0.074; hp2 ≤ 0.169). Pre-sleep consumption of CP and BLEND at a dose relative to LBM may enhance perceived overnight recovery to a greater extent than CTRL as a result of less muscle soreness the following morning after an acute evening RE bout.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA