Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Rep ; 23(9): 2732-2743, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847802

RESUMO

The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation.


Assuntos
Envelhecimento/patologia , Neurônios/transplante , Células-Tronco Pluripotentes/citologia , Córtex Visual/patologia , Animais , Axônios/metabolismo , Biomarcadores/metabolismo , Córtex Cerebral/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Especificidade de Órgãos , Sinapses/metabolismo , Telencéfalo/metabolismo
2.
Neuron ; 85(5): 982-97, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25741724

RESUMO

Pluripotent stem-cell-derived neurons constitute an attractive source for replacement therapies, but their utility remains unclear for cortical diseases. Here, we show that neurons of visual cortex identity, differentiated in vitro from mouse embryonic stem cells (ESCs), can be transplanted successfully following a lesion of the adult mouse visual cortex. Reestablishment of the damaged pathways included long-range and reciprocal axonal projections and synaptic connections with targets of the damaged cortex. Electrophysiological recordings revealed that some grafted neurons were functional and responsive to visual stimuli. No significant integration was observed following grafting of the same neurons in motor cortex, or transplantation of embryonic motor cortex in visual cortex, indicating that successful transplantation required a match in the areal identity of grafted and lesioned neurons. These findings demonstrate that transplantation of mouse ESC-derived neurons of appropriate cortical areal identity can contribute to the reconstruction of an adult damaged cortical circuit.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/fisiologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/transplante , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/ultraestrutura , Células-Tronco Embrionárias/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/ultraestrutura , Neurônios/ultraestrutura , Células-Tronco Pluripotentes/fisiologia , Células-Tronco Pluripotentes/transplante , Células-Tronco Pluripotentes/ultraestrutura
3.
Front Cell Neurosci ; 8: 272, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309320

RESUMO

Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia, and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1), the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622, and T1625 (Uniprot P15146) corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622, and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative Sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

4.
Neuron ; 77(3): 440-56, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23395372

RESUMO

The study of human cortical development has major implications for brain evolution and diseases but has remained elusive due to paucity of experimental models. Here we found that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), cultured without added morphogens, recapitulate corticogenesis leading to the sequential generation of functional pyramidal neurons of all six layer identities. After transplantation into mouse neonatal brain, human ESC-derived cortical neurons integrated robustly and established specific axonal projections and dendritic patterns corresponding to native cortical neurons. The differentiation and connectivity of the transplanted human cortical neurons complexified progressively over several months in vivo, culminating in the establishment of functional synapses with the host circuitry. Our data demonstrate that human cortical neurons generated in vitro from ESC/iPSC can develop complex hodological properties characteristic of the cerebral cortex in vivo, thereby offering unprecedented opportunities for the modeling of human cortex diseases and brain repair.


Assuntos
Encéfalo/citologia , Células-Tronco Embrionárias/citologia , Rede Nervosa/fisiologia , Células-Tronco Pluripotentes/fisiologia , Células Piramidais/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Fatores Etários , Animais , Axônios/fisiologia , Bromodesoxiuridina , Cálcio/metabolismo , Diferenciação Celular , Transplante de Células , Células Cultivadas , Dendritos/fisiologia , Potenciais Evocados/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Feto , Corantes Fluorescentes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Humanos , Técnicas In Vitro , Camundongos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Rede Nervosa/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Gravidez , Células Piramidais/citologia , RNA Mensageiro/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Potenciais Sinápticos/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo , Valina/análogos & derivados , Valina/farmacologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
5.
Epilepsy Res ; 100(1-2): 80-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22348791

RESUMO

The central histaminergic neuron system is an important regulator of activity stages such as arousal and sleep. In several epilepsy models, histamine has been shown to modulate epileptic activity and histamine 1 (H1) receptors seem to play a key role in this process. However, little is known about the H1 receptor-mediated seizure regulation during the early postnatal development, and therefore we examined differences in severity of kainic acid (KA)-induced status epilepticus (SE) and consequent neuronal damage in H1 receptor knock out (KO) and wild type (WT) mice at postnatal days 14, 21, and 60 (P14, P21, and P60). Our results show that in P14 H1 receptor KO mice, SE severity and neuronal damage were comparable to those of WT mice, whereas P21 KO mice had significantly decreased survival, more severe seizures, and enhanced neuronal damage in various brain regions, which were observed only in males. In P60 mice, SE severity did not differ between the genotypes, but in KO group, neuronal damage was significantly increased. Our results suggest that H1 receptors could contribute to regulation of seizures and neuronal damage age-dependently thus making the histaminergic system as a challenging target for novel drug design in epilepsy.


Assuntos
Neurônios/patologia , Receptores Histamínicos H1/deficiência , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Fatores Etários , Animais , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/patologia , Feminino , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/fisiologia , Estado Epiléptico/induzido quimicamente
6.
Epilepsy Res ; 90(1-2): 8-15, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20359868

RESUMO

The central histaminergic neuronal system is a powerful modulator of brain activity, and its functional disturbance is related to e.g. epilepsy. We have recently shown in the slice culture system that histaminergic neurons attenuate kainic acid (KA)-induced epileptiform activity and neuronal damage in the hippocampus through histamine 1 (H1) receptors. We now further examined the role of H1 receptors in the regulation of KA-induced seizures and neuronal damage in immature 9-day-old H1 receptor knock out (KO) mice. In the H1 receptor KO mice, behavioral seizures were significantly more severe and duration of seizures was significantly longer when compared to the wild type (WT) mice at the KA dose of 2mg/kg. Moreover, neuronal damage correlated with seizure severity, and it was significantly increased in the thalamus and retrosplenial granular cortex (RGC) of the KO mice. The H1 receptor antagonist triprolidine treatment supported these findings by showing significantly increased seizures severity and neuronal damage in the septum, thalamus, CA3 region of the hippocampus, and RGC in the KA-treated WT mice. Our present novel findings suggest that H1 receptors play a pivotal role in the regulation of seizure intensity and duration as well as seizure-induced neuronal damage in the immature P9 mice.


Assuntos
Suscetibilidade a Doenças/fisiopatologia , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Receptores Histamínicos H1/metabolismo , Convulsões/tratamento farmacológico , Triprolidina/uso terapêutico , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/patologia , Contagem de Células/métodos , Distribuição de Qui-Quadrado , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fluoresceínas , Ácido Caínico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compostos Orgânicos , Receptores Histamínicos H1/deficiência , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/patologia
7.
Brain Res ; 1316: 139-44, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20034479

RESUMO

The present study tested the hypothesis that mutations in amyloid precursor protein (APP) and presenilin (PS) 1 result in alterations in the amount of nuclear (n) DNA repair and nDNA damage in neurons in vivo. To this end, the relative amount of nDNA repair was measured in 8-month-old transgenic mice expressing either human mutant APP (APP751(SL) mice), human mutant PS1 (PS1(M146L) mice) or both human mutant APP and PS1 (APP751(SL)/PS1(M146L) mice) with unscheduled DNA synthesis, and the relative amount of nDNA single strand breaks (SSB) with in situ nick translation. APP751(SL)/PS1(M146L) mice showed a significantly decreased relative amount of nDNA repair in pyramidal cells in hippocampal area CA1/2 compared to APP751(SL) mice. Furthermore, PS1(M146L) mice showed a significantly increased relative amount of nDNA SSB in both granule cells in the dentate gyrus and pyramidal cells in area CA1/2 compared to both APP751(SL) mice and APP751(SL)/PS1(M146L) mice. These results might indicate a previously unknown action of mutations in PS1 on DNA integrity, which might be involved in the pathophysiologic processes of mutant PS1 in Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Hipocampo/fisiopatologia , Presenilina-1/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/fisiologia , Quebras de DNA de Cadeia Simples , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/fisiologia , Presenilina-1/genética , Nexinas de Proteases , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
8.
Prog Brain Res ; 172: 233-64, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18772036

RESUMO

The dorsal raphe nucleus (DRN) is a heterogeneous brainstem nucleus located in the midbrain and pons. Via widespread projections, which target a multitude of brain areas, its neurons utilize many transmitters to control various physiological functions, including learning, memory and affect. Accordingly, the DRN has been strongly associated with brain dysfunction, especially mood disorders such as depression, but also Alzheimer's disease. The DRN's most abundant transmitter, serotonin, has received the most attention in studies on both normal brain function and disease, and lately its involvement in the regulation of neuroplasticity has been under particular scrutiny. This chapter begins with a systematic overview of what we currently know about the anatomy of the DRN and its neurons, including their ascending projections. It continues with a review of the transmitters of the DRN, followed by a discussion on the connection between the DRN and neuroplasticity. Special emphasis is put on serotonin and its central role in neuroplasticity, which is proving to be of high priority in unraveling the full picture of the cellular mechanisms and their interconnections in the etiology of major depression and Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Transtorno Depressivo Maior/metabolismo , Plasticidade Neuronal/fisiologia , Núcleos da Rafe/metabolismo , Serotonina/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/anatomia & histologia , Forma Celular , Transtorno Depressivo Maior/fisiopatologia , Humanos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Núcleos da Rafe/anatomia & histologia , Receptores de Serotonina/metabolismo , Fatores de Risco
9.
BMC Neurosci ; 8: 107, 2007 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18093285

RESUMO

BACKGROUND: Both prenatal stress (PS) and postnatal chronic mild stress (CMS) are associated with behavioral and mood disturbances in humans and rodents. The aim of this study was to reveal putative PS- and/or CMS-related changes in basal spine morphology and density of pyramidal neurons in the rat medial prefrontal cortex (mPFC). RESULTS: We show that rats exposed to PS and/or CMS display changes in the morphology and number of basal spines on pyramidal neurons in the mPFC. CMS had a negative effect on spine densities, particularly on spines of the mushroom type, which are considered to form stronger and more stable synapses than other spine types. PS alone did not affect spine densities, but had a negative effect on the ratio of mushroom spines. In addition, PS seemed to make rats less responsive to some of the negative effects of CMS, which supports the notion that PS represents a predictive adaptive response. CONCLUSION: The observed changes may represent a morphological basis of PS- and CMS-related disturbances, and future studies in the field should not only consider total spine densities, but also separate between different spine types.


Assuntos
Espinhas Dendríticas/patologia , Transtornos do Humor/patologia , Córtex Pré-Frontal/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Estresse Fisiológico/patologia , Animais , Animais Recém-Nascidos , Forma Celular/fisiologia , Doença Crônica , Feminino , Citometria por Imagem , Masculino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Transtornos do Humor/etiologia , Transtornos do Humor/fisiopatologia , Córtex Pré-Frontal/anormalidades , Córtex Pré-Frontal/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico/complicações , Estresse Fisiológico/fisiopatologia , Sinapses/patologia , Transmissão Sináptica/fisiologia
10.
Brain Res Rev ; 55(2): 329-42, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17316819

RESUMO

Over a hundred years ago, Santiago Ramón y Cajal used a new staining method developed by Camillo Golgi to visualize, among many other structures, what we today call the dorsal raphe nucleus (DRN) of the midbrain. Over the years, the DRN has emerged as a multifunctional and multitransmitter nucleus, which modulates or influences many CNS processes. It is a phylogenetically old brain area, whose projections reach out to a large number of regions and nuclei of the CNS, particularly in the forebrain. Several DRN-related discoveries are tightly connected with important events in the history of neuroscience, for example the invention of new histological methods, the discovery of new neurotransmitter systems and the link between neurotransmitter function and mood disorders. One of the main reasons for the wide current interest in the DRN is the nucleus' involvement in depression. This involvement is particularly attributable to the main transmitter of the DRN, serotonin. Starting with a historical perspective, this essay describes the morphology, ascending projections and multitransmitter nature of the DRN, and stresses its role as a key target for depression research.


Assuntos
Depressão/patologia , Núcleos da Rafe/patologia , Núcleos da Rafe/ultraestrutura , Coloração pela Prata/métodos , Animais , Depressão/metabolismo , História do Século XIX , História do Século XX , Humanos , Vias Neurais/patologia , Neurotransmissores/metabolismo , Núcleos da Rafe/metabolismo , Coloração pela Prata/história
11.
Neurosci Lett ; 406(1-2): 138-41, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-16905252

RESUMO

Altered activity of the globus pallidus externus (GPe) is responsible for at least part of the cognitive and motor symptoms of Huntington's disease (HD). In this study, we tested the hypothesis that bilateral globus pallidus (GP; equivalent of GPe in primates) deep brain stimulation (DBS) improves cognitive and motor symptoms in the first transgenic rat model of HD (tgHD rats). GP DBS with clinically relevant stimulation parameters resulted in a significant improvement of cognitive dysfunction and reduced the number of choreiform movements. This data indicate that GPe DBS can be used to treat cognitive and motor dysfunction in HD.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiopatologia , Doença de Huntington/terapia , Vias Neurais/fisiopatologia , Recuperação de Função Fisiológica , Animais , Animais Geneticamente Modificados , Cognição , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/terapia , Estimulação Encefálica Profunda/normas , Modelos Animais de Doenças , Proteína Huntingtina , Doença de Huntington/complicações , Doença de Huntington/fisiopatologia , Movimento/fisiologia , Mutação , Neostriado/fisiopatologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Ratos , Resultado do Tratamento
12.
Mol Membr Biol ; 23(3): 277-88, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16785211

RESUMO

The distribution of raft markers in curved membrane exvaginations and invaginations, induced in human erythrocytes by amphiphile-treatment or increased cytosolic calcium level, was studied by fluorescence microscopy. Cholera toxin subunit B and antibodies were used to detect raft components. Ganglioside GM1 was enriched in membrane exvaginations (spiculae) induced by cytosolic calcium and amphiphiles. Stomatin and the cytosolic proteins synexin and sorcin were enriched in spiculae when induced by cytosolic calcium, but not in spiculae induced by amphiphiles. No enrichment of flotillin-1 was detected in spiculae. Analyses of the relative protein content of released exovesicles were in line with the microscopic observations. In invaginations induced by amphiphiles, the enrichment of ganglioside GM1, but not of the integral membrane proteins flotillin-1 and stomatin, was observed. Based on the experimental results and theoretical considerations we suggest that membrane skeleton-detached, laterally mobile rafts may sort into curved or flat membrane regions dependent on their intrinsic molecular shape and/or direct interactions between the raft elements.


Assuntos
Biomarcadores/sangue , Membrana Eritrocítica/metabolismo , Microdomínios da Membrana/fisiologia , Cálcio/metabolismo , Forma Celular/efeitos dos fármacos , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/fisiologia , Vesículas Citoplasmáticas/ultraestrutura , Humanos , Fluidez de Membrana/fisiologia , Proteínas de Membrana , Microscopia de Fluorescência , Modelos Biológicos , Pseudópodes/efeitos dos fármacos , Pseudópodes/fisiologia , Tensoativos/farmacologia
13.
J Neurosci ; 26(4): 1088-97, 2006 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-16436594

RESUMO

The central histaminergic neuron system inhibits epileptic seizures, which is suggested to occur mainly through histamine 1 (H1) and histamine 3 (H3) receptors. However, the importance of histaminergic neurons in seizure-induced cell damage is poorly known. In this study, we used an organotypic coculture system and confocal microscopy to examine whether histaminergic neurons, which were verified by immunohistochemistry, have any protective effect on kainic acid (KA)-induced neuronal damage in the developing hippocampus. Fluoro-Jade B, a specific marker for degenerating neurons, indicated that, after the 12 h KA (5 microM) treatment, neuronal damage was significantly attenuated in the hippocampus cultured together with the posterior hypothalamic slice containing histaminergic neurons [HI plus HY (POST)] when compared with the hippocampus cultured alone (HI) or with the anterior hypothalamus devoid of histaminergic neurons. Moreover, alpha-fluoromethylhistidine, an inhibitor of histamine synthesis, eliminated the neuroprotective effect in KA-treated HI plus HY (POST), and extracellularly applied histamine (1 nM to 100 microM) significantly attenuated neuronal damage only at 1 nM concentration in HI. After the 6 h KA treatment, spontaneous electrical activity registered in the CA1 subregion contained significantly less burst activity in HI plus HY (POST) than in HI. Finally, in KA-treated slices, the H3 receptor antagonist thioperamide enhanced the neuroprotective effect of histaminergic neurons, whereas the H1 receptor antagonists triprolidine and mepyramine dose-dependently decreased the neuroprotection in HI plus HY (POST). Our results suggest that histaminergic neurons protect the developing hippocampus from KA-induced neuronal damage, with regulation of neuronal survival being at least partly mediated through H1 and H3 receptors.


Assuntos
Convulsivantes/toxicidade , Hipocampo/efeitos dos fármacos , Histamina/farmacologia , Ácido Caínico/toxicidade , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/fisiologia , Técnicas de Cocultura , Hipocampo/citologia , Histamina/biossíntese , Histamina/fisiologia , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Hipotálamo Anterior/citologia , Hipotálamo Posterior/citologia , Imidazóis/farmacologia , Metilistidinas/farmacologia , Microscopia Confocal , Técnicas de Cultura de Órgãos , Piperidinas/farmacologia , Pirilamina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Histamínicos H1/efeitos dos fármacos , Receptores Histamínicos H1/fisiologia , Receptores Histamínicos H3/efeitos dos fármacos , Receptores Histamínicos H3/fisiologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Triprolidina/farmacologia
14.
Eur J Neurosci ; 22(8): 1997-2004, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16262638

RESUMO

Among the well-established roles of the neurotransmitter histamine (HA) is that as a regulator of the sleep-wake cycle, which early gained HA a reputation as a 'waking substance'. The tuberomammillary nucleus (TMN) of the posterior hypothalamus, which contains the sole source of neuronal HA in the brain, is reciprocally connected to the suprachiasmatic nucleus (SCN) which, in turn, is best known as the pacemaker of circadian rhythms in mammals. We report HA-immunoreactive (-ir) neurons in the mouse and rat SCN that neither display immunoreactivity (-iry) for the HA-synthesizing enzyme histidine decarboxylase (HDC) nor contain HDC mRNA. Further, HA-iry was absent in the SCN of HDC knockout mice, but present in appropriate control animals, indicating that the observed HA-iry is HDC dependent. Experiments with hypothalamic slice cultures and i.c.v. injection of HA suggest that HA in the SCN neurons originates in the TMN and is transported from the TMN along histaminergic fibres known to innervate the SCN. These results could indicate the existence of a hitherto unknown uptake mechanism for HA into neurons. Through HA uptake and, putatively, re-release of the captured HA, these neurons could participate in the HA-mediated effects on the circadian system in concert with direct histaminergic inputs from the TMN to the SCN. The innervation of the SCN by several neurotransmitter systems could provide a way for other systems to affect the HA-containing neuronal cell bodies in the SCN.


Assuntos
Histamina/metabolismo , Neurônios/metabolismo , Núcleo Supraquiasmático/citologia , Animais , Animais Recém-Nascidos , Química Encefálica/fisiologia , Contagem de Células , Cromatografia Líquida de Alta Pressão/métodos , Ritmo Circadiano/fisiologia , Histidina Descarboxilase/deficiência , Histidina Descarboxilase/metabolismo , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ratos
15.
J Physiol ; 561(Pt 3): 657-70, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15486020

RESUMO

Recent studies indicate that the histaminergic system, which is critical for wakefulness, also influences learning and memory by interacting with cholinergic systems in the brain. Histamine-containing neurones of the tuberomammillary nucleus densely innervate the cholinergic and GABAergic nucleus of the medial septum/diagonal band of Broca (MSDB) which projects to the hippocampus and sustains hippocampal theta rhythm and associated learning and memory functions. Here we demonstrate that histamine, acting via H(1) and/or H(2) receptor subtypes, utilizes direct and indirect mechanisms to excite septohippocampal GABA-type neurones in a reversible, reproducible and concentration-dependent manner. The indirect mechanism involves local ACh release, is potentiated by acetylcholinesterase inhibitors and blocked by atropine methylbromide and 4-DAMP mustard, an M(3) muscarinic receptor selective antagonist. This indirect effect, presumably, results from a direct histamine-induced activation of septohippocampal cholinergic neurones and a subsequent indirect activation of the septohippocampal GABAergic neurones. In double-immunolabelling studies, histamine fibres were found in the vicinity of both septohippocampal cholinergic and GABAergic cell types. These findings have significance for Alzheimer's disease and other neurodegenerative disorders involving a loss of septohippocampal cholinergic neurones as such a loss would also obtund histamine effects on septohippocampal cholinergic and GABAergic functions and further compromise hippocampal arousal and associated cognitive functions.


Assuntos
Acetilcolina/fisiologia , Hipocampo/fisiologia , Histamina/fisiologia , Neurônios/fisiologia , Núcleos Septais/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Hipocampo/efeitos dos fármacos , Histamina/farmacologia , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Histamínicos H1/efeitos dos fármacos , Receptores Histamínicos H1/fisiologia , Receptores Histamínicos H2/efeitos dos fármacos , Receptores Histamínicos H2/fisiologia , Núcleos Septais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA