Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Virulence ; 15(1): 2327883, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38465639

RESUMO

Cryptococcus neoformans is an environmental yeast that primarily affects immunocompromised individuals, causing respiratory infections and life-threatening meningoencephalitis. Treatment is complicated by limited antifungal options, with concerns such as adverse effects, dose-limiting toxicity, blood-brain barrier permeability, and resistance development, emphasizing the critical need to optimize and expand current treatment options against invasive cryptococcosis. Galleria mellonella larvae have been introduced as an ethical intermediate for in vivo testing, bridging the gap between in vitro antifungal screening and mouse studies. However, current infection readouts in G. mellonella are indirect, insensitive, or invasive, which hampers the full potential of the model. To address the absence of a reliable non-invasive method for tracking infection, we longitudinally quantified the cryptococcal burden in G. mellonella using bioluminescence imaging (BLI). After infection with firefly luciferase-expressing C. neoformans, the resulting bioluminescence signal was quantitatively validated using colony-forming unit analysis. Longitudinal comparison of BLI to health and survival analysis revealed increased sensitivity of BLI in discriminating cryptococcal burden during early infection. Furthermore, BLI improved the detection of treatment efficacy using first-line antifungals, thereby benchmarking this model for antifungal testing. In conclusion, we introduced BLI as a real-time, quantitative readout of cryptococcal burden in G. mellonella over time, enabling more sensitive and reliable antifungal screening.


Assuntos
Criptococose , Cryptococcus neoformans , Mariposas , Animais , Antifúngicos/uso terapêutico , Criptococose/microbiologia , Larva/microbiologia , Mariposas/microbiologia
2.
Microbiol Spectr ; 11(4): e0082523, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37466453

RESUMO

Aspergillus fumigatus is an environmental mold that causes life-threatening respiratory infections in immunocompromised patients. The plateaued effectiveness of antifungal therapy and the increasing prevalence of triazole-resistant isolates have led to an urgent need to optimize and expand the current treatment options. For the transition of in vitro research to in vivo models in the time- and resource-consuming preclinical drug development pipeline, Galleria mellonella larvae have been introduced as a valuable in vivo screening intermediate. Despite the high potential of this model, the current readouts of fungal infections in G. mellonella are insensitive, irreproducible, or invasive. To optimize this model, we aimed for the longitudinal quantification of the A. fumigatus burden in G. mellonella using noninvasive bioluminescence imaging (BLI). Larvae were infected with A. fumigatus strains expressing a red-shifted firefly luciferase, and the substrate dosage was optimized for the longitudinal visualization of the fungal burden without affecting larval health. The resulting photon flux was successfully validated for fungal quantification against colony forming units (CFU) analyses, which revealed an increased dynamic range from BLI detection. Comparison of BLI to survival rates and health index scores additionally revealed improved sensitivity for the early discrimination of differences in fungal burdens as early as 1 day after infection. This was confirmed by the improved detection of treatment efficacy against triazole-susceptible and -resistant strains. In conclusion, we established a refined G. mellonella aspergillosis model that enables the noninvasive real-time quantification of A. fumigatus by BLI. This model provides a quick and reproducible in vivo system for the evaluation of treatment options and is in line with 3Rs recommendations. IMPORTANCE Triazole-resistant Aspergillus fumigatus strains are rapidly emerging, and resistant infections are difficult to treat, causing mortality rates of up to 88%. The recent WHO priority list underscores A. fumigatus as one of the most critical fungal pathogens for which innovative antifungal treatment should be (urgently) prioritized. Here, we deliver a Galleria mellonella model for triazole-susceptible and -resistant A. fumigatus infections combined with a statistically powerful quantitative, longitudinal readout of the A. fumigatus burden for optimized preclinical antifungal screening. G. mellonella larvae are a convenient invertebrate model for in vivo antifungal screenings, but so far, the model has been limited by variable and insensitive observational readouts. We show that bioluminescence imaging-based fungal burden quantification outperforms these readouts in reliability, sensitivity, and time to the detection of treatment effects in both triazole-susceptible and -resistant infections and can thus lead to better translatability from in vitro antifungal screening results to in vivo confirmation in mouse and human studies.


Assuntos
Antifúngicos , Mariposas , Humanos , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus , Triazóis/farmacologia , Reprodutibilidade dos Testes , Farmacorresistência Fúngica , Mariposas/microbiologia , Larva/microbiologia , Testes de Sensibilidade Microbiana
3.
Arch Dis Child ; 108(8): 654-658, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36927621

RESUMO

BACKGROUND: Parents are often confronted with a difficult decision when their child falls ill: should they go to the general practitioner (GP) or not? This study aims to describe this process comprehensively in order to allow clinicians to assess the extent to which parents can recognise clinical warning signs and act accordingly. The purpose of this study is to describe parents' decision-making processes when deciding whether or not to consult a GP for their sick child. METHODS: We used a qualitative study design based on semistructured interviews to investigate the decision-making process of 25 parents. Four case scenarios describing a developing illness in a child were presented. RESULTS: Parents' reasons for seeking medical attention could be divided into two main categories. First, non-specific fears lead parents to consult a doctor. Parents were alarmed by the persistence and progression of symptoms, the combination of symptoms or changes in their child's behaviour or they needed reassurance. Second, several specific fears were identified. Sometimes, parents fear a specific disease, while at other times, they are concerned about warning signs. Some parents, however, would not seek medical attention at any decision point even though their child could be in a potentially life-threatening situation. CONCLUSIONS: Although parents make carefully considered decisions on whether or not to consult a doctor, many appear to miss red flags, including more experienced parents. Conversely, some become overly concerned with certain specific symptoms such as fever, and few parents are familiar with self-management strategies.


Assuntos
Medo , Médicos , Criança , Humanos , Pesquisa Qualitativa , Pais , Ansiedade/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA