Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(8): 4904-4910, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31348669

RESUMO

Electron spins in solids constitute remarkable quantum sensors. Individual defect centers in diamond were used to detect individual nuclear spins with a nanometer scale resolution, and ensemble magnetometers rival SQUID and vapor cell magnetometers when taking into account room-temperature operation and size. NV center spins can also detect electric field vectors, despite their weak coupling to electric fields. Here, we employ ensembles of NV center spins to measure macroscopic AC electric fields with high precision. We utilize low strain, 12C enriched diamond to achieve the maximum sensitivity and tailor the spin Hamiltonian via the proper magnetic field adjustment to map out the AC electric field strength and polarization and arrive at refined electric field coupling constants. For high-precision measurements, we combine classical lock-in detection with aspects from quantum phase estimation for the effective suppression of technical noise. Eventually, this enables t-1/2 uncertainty scaling of the electric field strength over extended averaging periods, enabling us to reach a precision down to 10-7 V/µm for an AC electric field with a frequency of 2 kHz and an amplitude of 0.012 V/ µm.

2.
Phys Rev Lett ; 112(9): 097603, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24655277

RESUMO

Single charge nanoscale detection in ambient conditions is a current frontier in metrology that has diverse interdisciplinary applications. Here, such single charge detection is demonstrated using two nitrogen-vacancy (NV) centers in diamond. One NV center is employed as a sensitive electrometer to detect the change in electric field created by the displacement of a single electron resulting from the optical switching of the other NV center between its neutral (NV(0)) and negative (NV(-)) charge states. As a consequence, our measurements also provide direct insight into the charge dynamics inside the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA