Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
PLoS One ; 13(5): e0192780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29742104

RESUMO

Nuclear magnetic resonance (NMR) experiments on subnanoliter (sub-nL) volumes are hindered by the limited sensitivity of the detector and the difficulties in positioning and holding such small samples in proximity of the detector. In this work, we report on NMR experiments on liquid and biological entities immersed in liquids having volumes down to 100 pL. These measurements are enabled by the fabrication of high spatial resolution 3D printed microfluidic structures, specifically conceived to guide and confine sub-nL samples in the sub-nL most sensitive volume of a single-chip integrated NMR probe. The microfluidic structures are fabricated using a two-photon polymerization 3D printing technique having a resolution better than 1 µm3. The high spatial resolution 3D printing approach adopted here allows to rapidly fabricate complex microfluidic structures tailored to position, hold, and feed biological samples, with a design that maximizes the NMR signals amplitude and minimizes the static magnetic field inhomogeneities. The layer separating the sample from the microcoil, crucial to exploit the volume of maximum sensitivity of the detector, has a thickness of 10 µm. To demonstrate the potential of this approach, we report NMR experiments on sub-nL intact biological entities in liquid media, specifically ova of the tardigrade Richtersius coronifer and sections of Caenorhabditis elegans nematodes. We show a sensitivity of 2.5x1013 spins/Hz1/2 on 1H nuclei at 7 T, sufficient to detect 6 pmol of 1H nuclei of endogenous compounds in active volumes down to 100 pL and in a measurement time of 3 hours. Spectral resolutions of 0.01 ppm in liquid samples and of 0.1 ppm in the investigated biological entities are also demonstrated. The obtained results may indicate a route for NMR studies at the single unit level of important biological entities having sub-nL volumes, such as living microscopic organisms and eggs of several mammalians, humans included.


Assuntos
Dispositivos Lab-On-A-Chip , Limite de Detecção , Espectroscopia de Ressonância Magnética/instrumentação , Impressão Tridimensional , Animais , Caenorhabditis elegans/química , Desenho de Equipamento
3.
Phys Chem Chem Phys ; 16(40): 22222-8, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25212513

RESUMO

Amorphous composite silicon thin films electrodeposited in tetrahydrofuran, containing up to 80 at% of Si and exhibiting an homogeneous dispersions of O, C and Cl in the amorphous Si matrix, have been successfully stabilized against oxidation using a post-annealing step in inert atmosphere. In order to understand the impact of the annealing step on their stabilization against oxidation, their composition and structure have been investigated upon heat treatments. It has been shown that the presence of impurities such as O, C and Cl does not have any impact on the stabilization process, which is rather linked to the presence of hydrogen in the Si composites. This conclusion has been drawn after a detailed analysis of the bonding structure of films annealed at different temperatures and dwell times by the mean of Raman spectroscopy. It has been shown that annealing the as-deposited films at 350 °C for a couple of hours or at higher temperatures induced a hydrogen evolution, characterized by the breaking of Si-H bonds and the formation of Si-Si bonds, which stabilized the silicon network. The understanding and the reproducibility of this stabilization process of silicon thin film electrodeposited in organic solvent paves the way for their use for many applications.

4.
Sci Technol Adv Mater ; 15(3): 035016, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877692

RESUMO

High-speed melt spinning of a cyclo-olefin polymer (COP) and a copolyamide (CoPA) have been performed. Differential scanning calorimetry curves of the resulting monofilaments show that they remain in an amorphous state even after hot drawing. Wide angle x-ray diffraction patterns of undrawn and drawn COP filaments show that although the material remains in an amorphous state, a degree of orientation is induced in the polymer after drawing. The amorphous filaments show an enhanced bending recovery with respect to different semi-crystalline monofilaments commercially available. However, single fiber axial compressive testing indicates that the amorphous filaments exhibit a compressive modulus value which is 50% lower than what is observed for a reference semi-crystalline PET filament. Analysis of the compressive strains applied by the bending recovery test indicates that while the maximum applied strains remain well within the region of elastic deformation of the amorphous materials, the threshold between elastic and plastic deformation is reached for the semi-crystalline materials.

5.
Rev Sci Instrum ; 84(10): 101301, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24182094

RESUMO

As nanoindentation at high temperatures becomes increasingly popular, a review of indenter materials for usage at high temperatures is instructive for identifying appropriate indenter-sample materials combinations to prevent indenter loss or failure due to chemical reactions or wear during indentation. This is an important consideration for nanoindentation as extremely small volumes of reacted indenter material will have a significant effect on measurements. The high temperature hardness, elastic modulus, thermal properties, and chemical reactivities of diamond, boron carbide, silicon carbide, tungsten carbide, cubic boron nitride, and sapphire are discussed. Diamond and boron carbide show the best elevated temperature hardness, while tungsten carbide demonstrates the lowest chemical reactivity with the widest array of elements.

7.
Rev Sci Instrum ; 84(4): 045103, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23635228

RESUMO

A general nano-mechanical test platform capable of performing variable temperature and variable strain rate testing in situ in the scanning electron microscope is described. A variety of test geometries are possible in combination with focused ion beam machining or other fabrication techniques: indentation, micro-compression, cantilever bending, and scratch testing. The system is intrinsically displacement-controlled, which allows it to function directly as a micro-scale thermomechanical test frame. Stable, elevated temperature indentation∕micro-compression requires the indenter tip and the sample to be in thermal equilibrium to prevent thermal displacement drift due to thermal expansion. This is achieved through independent heating and temperature monitoring of both the indenter tip and sample. Furthermore, the apex temperature of the indenter tip is calibrated, which allows it to act as a referenced surface temperature probe during contact. A full description of the system is provided, and the effects of indenter geometry and of radiation on imaging conditions are discussed. The stabilization time and temperature distribution throughout the system as a function of temperature is characterized. The advantages of temperature monitoring and thermal calibration of the indenter tip are illustrated, which include the possibility of local thermal conductivity measurement. Finally, validation results using nanoindentation on fused silica and micro-compression of [100] silicon micro-pillars as a function of temperature up to 500 °C are presented, and procedures and considerations taken for these measurements are discussed. A brittle to ductile transition from fracture to splitting then plastic deformation is directly observed in the SEM for silicon as a function of temperature.

8.
Nanotechnology ; 22(7): 075706, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21233539

RESUMO

Doped silicon nanowires (NWs) were epitaxially grown on silicon substrates by pulsed laser deposition following a vapour-liquid-solid process, in which dopants together with silicon atoms were introduced into the gas phase by laser ablation of lightly and highly doped silicon target material. p-n or p(++)-p junctions located at the NW-silicon substrate interfaces were thus realized. To detect these junctions and visualize them the electron beam induced current technique and two-point probe current-voltage measurements were used, based on nanoprobing individual silicon NWs in a scanning electron microscope. Successful silicon NW doping by pulsed laser deposition of doped target material could experimentally be demonstrated. This doping strategy compared to the commonly used doping from the gas phase during chemical vapour deposition is evaluated essentially with a view to potentially overcoming the limitations of chemical vapour deposition doping, which shows doping inhomogeneities between the top and bottom of the NW as well as between the core and shell of NWs and structural lattice defects, especially when high doping levels are envisaged. The pulsed laser deposition doping technique yields homogeneously doped NWs and the doping level can be controlled by the choice of the target material. As a further benefit, this doping procedure does not require the use of poisonous gases and may be applied to grow not only silicon NWs but also other kinds of doped semiconductor NWs, e.g. group III nitrides or arsenides.

9.
Nanotechnology ; 21(5): 055701, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20023305

RESUMO

Characterizing the mechanical response of isolated nanostructures is vitally important to fields such as microelectromechanical systems (MEMS) where the behaviour of nanoscale contacts can in large part determine system reliability and lifetime. To address this challenge directly, single crystal gold nanodots are compressed inside a high resolution scanning electron microscope (SEM) using a nanoindenter equipped with a flat punch tip. These structures load elastically, and then yield in a stochastic manner, at loads ranging from 16 to 110 microN, which is up to five times higher than the load necessary for flow after yield. Yielding is immediately followed by displacement bursts equivalent to 1-50% of the initial height, depending on the yield point. During the largest displacement bursts, strain energy within the structure is released while new surface area is created in the form of localized slip bands, which are evident in both the SEM movies and still-images. A first order estimate of the apparent energy release rate, in terms of fracture mechanics concepts, for bursts representing 5-50% of the structure's initial height is on the order of 10-100 J m(-2), which is approximately two orders of magnitude lower than bulk values. Once this initial strain burst during yielding has occurred, the structures flow in a ductile way. The implications of this behaviour, which is analogous to a brittle to ductile transition, are discussed with respect to mechanical reliability at the micro- and nanoscales.

10.
Nanotechnology ; 20(45): 455302, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19834249

RESUMO

The possibility to synthesize large areas of silver grains organized in nanorings using a simple technique based on nanosphere lithography and electroless plating as a metal deposition method is described for the first time. In addition, we present a systematic SERS study of the obtained long-range ordered silver nanodots and nanorings. The possibility to precisely control the size, the interdistance and the morphology of these nanostructures allows us to systematically investigate the influence of these parameters on SERS. We show that the best possible SERS substrates should not only present optimal sizes, interdistances and shapes, but also a grain-like structure composed of sub-100 nm grains in order to maximize the number of hot-spots. In addition, we show that grains arranged in nanorings present higher enhancement factors (E(F) = 5.5 x 10(5)) as compared to similar arrays made of nanodots. A wide range of applications, including real-time monitoring of catalytic surface reactions, environmental and security monitoring as well as clinical and pharmaceutical screening, can be envisaged for these SERS substrates.


Assuntos
Nanopartículas Metálicas/química , Nanoestruturas/química , Nanotecnologia/métodos , Prata/química , Análise Espectral Raman/métodos , Propriedades de Superfície
11.
Nanotechnology ; 20(38): 385304, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19713594

RESUMO

Bending and vibration tests performed inside a scanning electron microscope were used to mechanically characterize high aspect pillars grown by focused electron-beam- (FEB) induced deposition from the precursor Cu(C(5)HF(6)O(2))(2). Supported by finite element (FE) analysis the Young's modulus was determined from load-deflection measurements using cantilever-based force sensing and the material density from additional resonance vibration analysis. The pillar material consisted of a carbonaceous (C-, O-, F-, H-containing) matrix which embeds 5-10 at.% Cu deposited at 5 and 20 keV primary electron energy and 100 pA beam current, depending on primary electron energy. The Young's moduli of the FEB deposits increased from 17 +/- 6 to 25 +/- 8 GPa with increasing electron dose. The density of the carbonaceous matrix shows a dependence on the primary electron energy: 1.2 +/- 0.3 g cm(-3) (5 keV) and 2.2 +/- 0.5 g cm(-3) (20 keV). At a given primary energy a correlation with the irradiation dose is found. Quality factors determined from the phase relation at resonance of the fundamental pillar vibration mode were in the range of 150-600 and correlated to the deposited irradiation energy.

12.
Nano Lett ; 9(4): 1341-4, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19256535

RESUMO

The electrical properties of vertically aligned silicon nanowires doped by ion implantation are studied in this paper by a combination of electron beam-induced current imaging and two terminal current-voltage measurements. By varying the implantation parameters in several process steps, uniform p- and n-doping profiles as well as p-n junctions along the nanowire axis are realized. The effective doping is demonstrated by electron beam-induced current imaging on single nanowires, and current-voltage measurements show their well-defined rectifying behavior.

13.
Micron ; 40(1): 22-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18400504

RESUMO

In this study, the microstructure and the deformation mechanisms of TiN, CrN and multilayer TiN/CrN thin films on silicon substrates were investigated. Cross-sectional lamellas of nanoindents were prepared by focused ion beam milling to observe by transmission electron microscopy the microstructure of the as-deposited and deformed materials. TiN film exhibits nanocrystalline columns, whereas CrN shows large grains. The TiN/CrN multilayer presents microstructural features typical for both materials. A film hardness of 16.9GPa for CrN, 15.8GPa for TiN and 16.6GPa for TiN/CrN was found by the nanoindentation. Reduced modulus recorded for TiN and CrN reference coatings were 221.54 and 171.1GPa, respectively, and 218.6GPa for the multilayer coating. The deformation mechanisms were observed via in-situ scanning electron microscope nanoindentation. The TiN thin film showed short radial cracks, whereas CrN deformed through pile-up and densification of the material. For TiN/CrN multilayer pile-up and cracks were found. Transmission electron microscopy observations indicated that TiN deforms through grain boundary sliding and CrN via densification and material flow. The deformation mechanism observed in TiN/CrN multilayer was found to be a mixture of both modes.

15.
Nanotechnology ; 19(40): 405304, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21832614

RESUMO

We report two types of site-selective metal deposition methods based on colloidal crystal templating. We discuss in particular the controllability of the morphology and crystallinity of Au nanodots depending of the choice of method.

16.
J Colloid Interface Sci ; 318(2): 264-70, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18054951

RESUMO

Functionalization of colloidal particles based on the use of polyelectrolytes and heterocoagulation was combined with electrophoretic deposition (EPD), with the aim of depositing titania-polystyrene (TiO(2)-PS) composite particles on Ti6Al4V substrates. The composite particles were obtained by heterocoagulation of TiO(2) nanoparticles on the surface of monosized polystyrene beads of 4.6 microm in diameter. Two alternative methods were developed for the preparation of the TiO(2)-PS suspensions in organic fluids for cathodic electrodeposition. The first method was carried out in alkaline aqueous medium with the use of polyelectrolytes and intermediate control measurements of zeta potential, conductivity, and pH; the second one was carried out directly in the organic solvent used for EPD, typically isopropanol. Examples of deposits obtained by EPD in both suspensions and a comparative analysis between the two methods are presented.


Assuntos
Nanopartículas/química , Poliestirenos/química , Titânio/química , Coloides , Eletrodos , Eletrólitos/química , Eletroforese , Tamanho da Partícula , Propriedades de Superfície , Suspensões/química
17.
Anal Bioanal Chem ; 389(3): 763-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17676313

RESUMO

A method for determining plasma power in rf-GDOES is presented. It is based on an effective resistance located in the inductive coil of the impedance matching. The amount of electrical power consumed in the matching system depends on the capacitive current flowing through the matching system, which depends on the applied voltage, the stray capacity, and the frequency. This correction method is experimentally evaluated and compared with the integral plasma power calculation.

18.
J Biomed Mater Res A ; 82(2): 436-44, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17295244

RESUMO

Composite bilayer coatings on Ti6Al4V substrates were prepared by electrophoretic deposition, a simple and fast low temperature coating technique. Biocompatible yttrium-stabilized zirconia (YSZ) in the form of nanoparticles and bioactive Bioglass (45S5) in the form of microparticles were chosen as coating materials. The first layer consisted of 5 microm of YSZ, deposited with the intention to avoid any metal tissue contact. The second layer consisted of 15-microm thick 45S5-YSZ composite, supposed to react with the surrounding bone tissue and to enhance implant fixation. The adsorption of YSZ nanoparticles on 45S5 microparticles in organic suspension was found to invert the surface charge of the 45S5 particles from negative to positive. This enabled cathodic electrophoretic deposition of 45S5, avoiding uncontrolled anodization (oxidation) of the substrate. The coatings were sintered at 900 degrees C for 2 h under argon flow. The characterization was performed using SEM, EDX, and nanoindentation (cross section). Potential applications in the orthopedics field are discussed.


Assuntos
Cerâmica , Materiais Revestidos Biocompatíveis , Zircônio , Ligas , Fenômenos Biomecânicos , Cerâmica/química , Materiais Revestidos Biocompatíveis/química , Eletroforese , Vidro , Temperatura Alta , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanopartículas/química , Nanopartículas/ultraestrutura , Próteses e Implantes , Titânio/química , Ítrio , Zircônio/química
19.
Nano Lett ; 7(1): 75-80, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17212443

RESUMO

We show that hemispherical gold droplets on top of silicon nanowires when grown by the vapor-liquid-solid (VLS) mechanism, can produce a significant enhancement of Raman scattered signals. Signal enhancement for a few or even just single gold droplets is demonstrated by analyzing the enhanced Raman signature of malachite green molecules. For this experiment, trenches (approximately 800 nm wide) were etched in a silicon-on-insulator (SOI) wafer along <110> crystallographic directions that constitute sidewalls ({110} surfaces) suitable for the growth of silicon nanowires in <111> directions with the intention that the gold droplets on the silicon nanowires can meet somewhere in the trench when growth time is carefully selected. Another way to realize gold nanostructures in close vicinity is to attach a silicon nanowire with a gold droplet onto an atomic force microscopy (AFM) tip and to bring this tip toward another gold-coated AFM tip where malachite green molecules were deposited prior to the measurements. In both experiments, signal enhancement of characteristic Raman bands of malachite green molecules was observed. This indicates that silicon nanowires with gold droplets atop can act as efficient probes for tip-enhanced Raman spectroscopy (TERS). In our article, we show that a nanowire TERS probe can be fabricated by welding nanowires with gold droplets to AFM tips in a scanning electron microscope (SEM). TERS tips made from nanowires could improve the spatial resolution of Raman spectroscopy so that measurements on the nanometer scale are possible.


Assuntos
Ouro/química , Nanofios , Silício/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
20.
Nanotechnology ; 18(3): 035503, 2007 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-19636122

RESUMO

Silicon nanowires grown by the vapour-liquid-solid growth mechanism with gold as the catalyst show gold caps approximately 50-400 nm in diameter with an almost ideal hemispherical shape atop a silicon column. These gold caps are extremely well suited for exploiting the tip or surface enhanced Raman scattering effects since they assume the right size on the nanometre scale and a reproducible, almost ideal hemispherical shape. On attaching a nanowire with a gold cap to an atomic force microscopy (AFM) tip, the signal enhancement by the gold nanoparticle can be used to spatially resolve a Raman signal. Applications of this novel nanowire based technical tip enhanced Raman scattering solution are widespread and lie in the fields of biomedical and life sciences as well as security (e.g. detection of bacteria and explosives) and in the field of solid state research, e.g. in silicon technology where the material composition, doping, crystal orientation and lattice strain can be probed by Raman spectroscopy. A prerequisite for obtaining this spatial resolution in nano-Raman spectroscopy is the attachment of a nanowire with a gold cap to an AFM tip. This attachment by welding a nanowire in a scanning electron microscope to an AFM tip is demonstrated in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA