Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499841

RESUMO

Precise machining of micro parts from difficult-to-cut materials requires using advanced technology such as wire electrical discharge machining (WEDM). In order to enhance the productivity of micro WEDM, the key role is understanding the influence of process parameters on the surface topography and the material's removal rate (MRR). Furthermore, effective models which allow us to predict the influence of the parameters of micro-WEDM on the qualitative effects of the process are required. This paper influences the discharge energy, time interval, and wire speed on the surface topography's properties, namely Sa, Sk, Spk, Svk, and MRR, after micro-WEDM of Inconel 718 were described. Developed RSM and ANN model of the micro-WEDM process, showing that the discharge energy had the main influence (over 70%) on the surface topography's parameters. However, for MRR, the time interval was also significant. Furthermore, a reduction in wire speed can lead to a decrease in the cost process and have a positive influence on the environment and sustainability of the process. Evaluation of developed prediction models of micro-WEDM of Inconel 718 indicates that ANN had a lower value for the relative error compared with the RSM models and did not exceed 4%.

2.
Materials (Basel) ; 15(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36363220

RESUMO

Commercially supplied inoculation wires have a guaranteed chemical composition but not the size and distribution of individual phases, which are very important for nucleation. Therefore, two commercial alloys used for the inoculation of Al-Si alloys (AlTi3B1 and AlTi5B1) are investigated in this paper. The emphasis is placed on their structural analysis and the size and distribution of individual intermetallic phases. Furthermore, the grain refinement effect will be tested by adding these alloys to the AlSi7Mg0.3 alloy and testing the optimal amount of added inoculation wires. The results showed that the size and distribution of the individual phases in AlTi3B1 and AlTi5B1 meet the requirements for the successful inoculation of aluminum alloys, the intermetallic phases based on the TiAl3 phase are fine enough, and there is no agglomeration that would reduce the number of nuclei. This assumption was confirmed by adding these inoculants to the AlSi7Mg0.3 alloy, and it was found that the most ideal amount of inoculants added is 0.01 wt % when the structure was refined by approximately 32%.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234493

RESUMO

Design and properties of a plasmonic modulator in situ tunable by electric field are presented. Our design comprises the creation of periodic surface pattern on the surface of an elastic polymer supported by a piezo-substrate by excimer laser irradiation and subsequent selective coverage by silver by tilted angle vacuum evaporation. The structure creation was confirmed by AFM and FIB-SEM techniques. An external electric field is used for fine control of the polymer pattern amplitude, which tends to decrease with increasing voltage. As a result, surface plasmon-polariton excitation is quenched, leading to the less pronounced structure of plasmon response. This quenching was checked using UV-Vis spectroscopy and SERS measurements, and confirmed by numerical simulation. All methods prove the proposed functionality of the structures enabling the creation smart plasmonic materials for a very broad range of advanced optical applications.

4.
Polymers (Basel) ; 14(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35683950

RESUMO

This research is aimed at evaluating the effect of low-cycle fatigue on a newly designed hybrid sandwich ski structure to determine the changes that may occur due to cyclic loading and thus affect its use. This is primarily concerned with the fatigue behavior of the tested ski over different time intervals simulating its seasonal use and its effect on the mechanical properties of the ski, i.e., the durability and integrity of the individual layers of the sandwich ski structure. The ski was subjected to 70,000 deflections by moving the crossbar by 60 mm according to the ski deflection calculation in the arch. The results of the cyclic tests of the engineered ski design showed no significant changes in the ski during loading. The average force required to achieve deflection in the first 10,000 cycles was 514.0 ± 4.2 N. Thereafter, a secondary hardening of the structure occurred during relaxation and the force required increased slightly to 543.6 ± 1.7 N. The required force fluctuated slightly during the measurements and in the last series the value was 540.4 ± 0.8 N. Low-cycle fatigue did not have a significant effect on the mechanical properties of the ski; there was no change in shape or visual delamination of the individual layers of the structure. From the cross-section, local delamination was demonstrated by image analysis, especially between the Wood core and the composite layers E-Glass biaxial and Carbon triaxial.

5.
Nanomaterials (Basel) ; 12(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269238

RESUMO

Ag-decorated TiO2 nanostructured materials are promising photocatalysts. We used non-standard cryo-lyophilization and ArF laser ablation methods to produce TiO2 nanosheets and TiO2 nanostructured thin films decorated with Ag nanoparticles. Both methods have a common advantage in that they provide a single multiply twinned Ag(0) characterized by {111} twin boundaries. Advanced microscopy techniques and electron diffraction patterns revealed the formation of multiply twinned Ag(0) structures at elevated temperatures (500 °C and 800 °C). The photocatalytic activity was demonstrated by the efficient degradation of 4-chlorophenol and Total Organic Carbon removal using Ag-TiO2 nanosheets, because the multiply twinned Ag(0) served as an immobilized photocatalytically active center. Ag-TiO2 nanostructured thin films decorated with multiply twinned Ag(0) achieved improved photoelectrochemical water splitting due to the additional induction of a plasmonic effect. The photocatalytic properties of TiO2 nanosheets and TiO2 nanostructured thin films were correlated with the presence of defect-twinned structures formed from Ag(0) nanoparticles with a narrow size distribution, tuned to between 10 and 20 nm. This work opens up new possibilities for understanding the defects generated in Ag-TiO2 nanostructured materials and paves the way for connecting their morphology with their photocatalytic activity.

6.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159651

RESUMO

Layered ternary Ti2SnC carbides have attracted significant attention because of their advantage as a M2AX phase to bridge the gap between properties of metals and ceramics. In this study, Ti2SnC materials were synthesized by two different methods-an unconventional low-energy ion facility (LEIF) based on Ar+ ion beam sputtering of the Ti, Sn, and C targets and sintering of a compressed mixture consisting of Ti, Sn, and C elemental powders up to 1250 °C. The Ti2SnC nanocrystalline thin films obtained by LEIF were irradiated by Ar+ ions with an energy of 30 keV to the fluence of 1.1015 cm-2 in order to examine their irradiation-induced resistivity. Quantitative structural analysis obtained by Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) confirmed transition from ternary Ti2SnC to binary Ti0.98C carbide due to irradiation-induced ß-Sn surface segregation. The nanoindentation of Ti2SnC thin nanocrystalline films and Ti2SnC polycrystalline powders shows that irradiation did not affect significantly their mechanical properties when concerning their hardness (H) and Young's modulus (E). We highlighted the importance of the HAADF-STEM techniques to track atomic pathways clarifying the behavior of Sn atoms at the proximity of irradiation-induced nanoscale defects in Ti2SnC thin films.

7.
Materials (Basel) ; 15(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35057375

RESUMO

This article is devoted to the characterization of a new Co-W-Al alloy prepared by an aluminothermic reaction. This alloy is used for the subsequent preparation of a special composite nanopowder and for the surface coating of aluminum, magnesium, or iron alloys. Due to the very high temperature (2000 °C-3000 °C) required for the reaction, thermite was added to the mixture. Pulverized coal was also added in order to obtain the appropriate metal carbides (Co, W, Ti), which increase hardness, resistance to abrasion, and the corrosion of the coating and have good high temperature properties. The phase composition of the alloy prepared by the aluminothermic reaction showed mainly cobalt, tungsten, and aluminum, as well as small amounts of iron, titanium, and calcium. No carbon was identified using this method. The microstructure of this alloy is characterized by a cobalt matrix with smaller regular and irregular carbide particles doped by aluminum.

8.
Materials (Basel) ; 14(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209815

RESUMO

The application of thin monolayers helps to increase the endurance of a cutting tool during the drilling process. One such trendy coating is TiAlN, which guarantees high wear resistance and helps to "smooth out" surface defects. For this reason, a new type of weak TiAlN microlayer with a new composition has been developed and applied using the HIPIMs magnetron sputtering method. The aim of this study was to analyze surface-applied micro coatings, including chemical composition (EDX) and microstructure in the area of the coatings. Microstructural characterization and visualization of the surface structures of the TiAlN layer were performed using atomic force microscopy. To study the surface layer of the coatings, metallographic cross-sectional samples were prepared and monitored using light and electron microscopy methods. The microhardness of the test layer was also determined. Analyses have shown that a 2-to-4-micron thick monolayer has a microhardness of about 2500 HV, which can help increase the life of cutting tools.

9.
Nanomaterials (Basel) ; 11(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513841

RESUMO

This work deals with Cu-modified 1DTiO2 microrods (MRs) and their surface properties. The pristine lyophilized precursor Cu_1DTiO2, prepared by an environmentally friendly cryo-lyophilization method, was further annealed in the temperature interval from 500 to 950 °C. The microstructure of all samples was characterized by electron microscopy (SEM/EDS and HRTEM/SAED), X-ray powder diffraction (XRD), infrared spectroscopy, simultaneous DTA/TGA thermoanalytical measurement, and mass spectroscopy (MS). Special attention was paid to the surface structure and porosity. The 1D morphology of all annealed samples was preserved, but their surface roughness varied due to anatase-rutile phase transformation and the change of the nanocrystals habits due to nanocavities formation after releasing of confined ice-water. The introduction of 2 wt.% Cu as electronically active second species significantly reduced the direct bandgap of 1DTiO2 in comparison with undoped TiO2 and the standard Degussa TiO2_P25. All samples were tested for their UV absorption properties and H2 generation by PEC water splitting. We presented a detailed study on the surface characteristics of Cu doped 1DTiO2 MRs due to gain a better idea of their photocatalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA