Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926541

RESUMO

Osteogenesis Imperfecta (OI) is a clinically and genetically heterogeneous group of diseases characterized by brittle bones. Though genetic mutations in COL1A1 and COL1A2 account for approximately 85-90% of OI cases, there are now more than twenty genes described, responsible for rare forms of OI. Treatment is based on the use of bisphosphonates and though it is well established that they increase lumbar spine (LS) bone mineral density (BMD), the clinical impact on fracture reduction is still debated.In this study, we investigated the clinical characteristics of 38 patients with a bone fragility disorder that had variants in non-COL1A1/COL1A2 genes in order to study genotype-phenotype correlations, as the natural history of these rare forms is still not well known. We then studied the usefulness of bisphosphonate treatment by evaluating the effects on LS BMD, annual non-vertebral fracture rate, bone turnover markers and height. This study enabled us to better define the natural history of patients with non-COL1 pathogenic variants. Patients with CRTAP and TMEM38B variants consistently had a prenatal presentation with a short (<3rd p) and bowed femur. Importantly, this prenatal involvement does not predict the postnatal severity of the disease. Regarding treatment by bisphosphonates, all patients showed a significant increase in LS BMD while treated and this increase was dependent on the dose received. The increase in LS BMD also translated in a reduction of fracture rate during treatment. Finally, our study showed that the earlier bisphosphonates are initiated, the greater the fracture rate is reduced.

2.
Prenat Diagn ; 44(9): 1098-1104, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922934

RESUMO

This article presents two fetal cases of gnathodiaphyseal dysplasia (GDD), a rare autosomal dominant disorder, and reviews the relevant literature. The cases involved two fetuses exhibiting bone bowing, which led to the diagnosis of GDD. Genetic testing revealed two de novo variants of the ANO5 gene, confirming the diagnosis. A literature review was conducted to explore GDD's clinical and paraclinical presentation, diagnosis, and management. GDD is a rare but frequently inherited cause of bone fragility and jaw lesions characterized by a gain-of-function variant within the ANO5 gene. Clinical manifestations range from recurrent dental infections with mild jaw lesions to severe bone fragility with several fractures associated with large jaw lesions requiring disfiguring surgeries. Diagnostic techniques depend on the context and include targeted genetic testing of ANO5, untargeted molecular analysis with whole-exome sequencing, or whole-genome sequencing. This case report highlights the importance of recognizing GDD as a novel cause of bone bowing and fractures during pregnancy. By summarizing the literature, this article contributes to healthcare professionals' knowledge and improves the recognition, diagnosis, and care of patients with GDD.


Assuntos
Anoctaminas , Osteogênese Imperfeita , Humanos , Feminino , Gravidez , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/diagnóstico por imagem , Anoctaminas/genética , Adulto
3.
Eur J Hum Genet ; 32(8): 954-963, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824261

RESUMO

Pathogenic, largely truncating variants in the ETS2 repressor factor (ERF) gene, encoding a transcriptional regulator negatively controlling RAS-MAPK signaling, have been associated with syndromic craniosynostosis involving various cranial sutures and Chitayat syndrome, an ultrarare condition with respiratory distress, skeletal anomalies, and facial dysmorphism. Recently, a single patient with craniosynostosis and a phenotype resembling Noonan syndrome (NS), the most common disorder among the RASopathies, was reported to carry a de novo loss-of-function variant in ERF. Here, we clinically profile 26 individuals from 15 unrelated families carrying different germline heterozygous variants in ERF and showing a phenotype reminiscent of NS. The majority of subjects presented with a variable degree of global developmental and/or language delay. Their shared facial features included absolute/relative macrocephaly, high forehead, hypertelorism, palpebral ptosis, wide nasal bridge, and low-set/posteriorly angulated ears. Stature was below the 3rd centile in two-third of the individuals, while no subject showed typical NS cardiac involvement. Notably, craniosynostosis was documented only in three unrelated individuals, while a dolichocephalic aspect of the skull in absence of any other evidence supporting a premature closing of sutures was observed in other 10 subjects. Unilateral Wilms tumor was diagnosed in one individual. Most cases were familial, indicating an overall low impact on fitness. Variants were nonsense and frameshift changes, supporting ERF haploinsufficiency. These findings provide evidence that heterozygous loss-of-function variants in ERF cause a "RASopathy" resembling NS with or without craniosynostosis, and allow a first dissection of the molecular circuits contributing to MAPK signaling pleiotropy.


Assuntos
Craniossinostoses , Síndrome de Noonan , Fenótipo , Humanos , Craniossinostoses/genética , Craniossinostoses/patologia , Feminino , Masculino , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Criança , Pré-Escolar , Lactente , Mutação com Perda de Função , Adolescente , Proteínas Repressoras/genética , Adulto
5.
J Bone Miner Res ; 39(3): 287-297, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477767

RESUMO

Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. By targeted gene sequencing analysis, we identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22 variant (c.443C>T or c.446G>A), although the spinal involvement appeared later and was less severe in patients with a recessive variant. Relatives harboring the c.146G>A variant at the heterozygous state were asymptomatic. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. RT-PCR and western blot analyses demonstrated that both dominant and recessive KIF22 variants do not affect KIF22 mRNA and protein expression in patient fibroblasts compared to controls. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations (CMD), related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts. Compared to controls, DMMB assay showed a significant decrease of total sulfated proteoglycan content in culture medium but not in the cell layer, and immunofluorescence demonstrated a strong reduction of staining for chondroitin sulfates but not for heparan sulfates, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis and place the lepto-SEMDJL in the CMD spectrum.


Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. We identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations, related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts and showed a significant decrease of total sulfated proteoglycan content in culture medium, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis.


Assuntos
Instabilidade Articular , Osteocondrodisplasias , Humanos , Instabilidade Articular/genética , Cinesinas/genética , Osteocondrodisplasias/genética , Família , Proteínas de Ligação a DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA