Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Cereb Blood Flow Metab ; : 271678X241255599, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770566

RESUMO

Cardiac arrest (CA) is one of the leading causes of death worldwide. Due to hypoxic ischemic brain injury, CA survivors may experience variable degrees of neurological dysfunction. This study, for the first time, describes the progression of CA-induced neuropathology in the rat. CA rats displayed neurological and exploratory deficits. Brain MRI revealed cortical and striatal edema at 3 days (d), white matter (WM) damage in corpus callosum (CC), external capsule (EC), internal capsule (IC) at d7 and d14. At d3 a brain edema significantly correlated with neurological score. Parallel neuropathological studies showed neurodegeneration, reduced neuronal density in CA1 and hilus of hippocampus at d7 and d14, with cells dying at d3 in hilus. Microgliosis increased in cortex (Cx), caudate putamen (Cpu), CA1, CC, and EC up to d14. Astrogliosis increased earlier (d3 to d7) in Cx, Cpu, CC and EC compared to CA1 (d7 to d14). Plasma levels of neurofilament light (NfL) increased at d3 and remained elevated up to d14. NfL levels at d7 correlated with WM damage. The study shows the consequences up to 14d after CA in rats, introducing clinically relevant parameters such as advanced neuroimaging and blood biomarker useful to test therapeutic interventions in this model.

2.
Anesthesiology ; 139(5): 628-645, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487175

RESUMO

BACKGROUND: The catabolism of the essential amino acid tryptophan to kynurenine is emerging as a potential key pathway involved in post-cardiac arrest brain injury. The aim of this study was to evaluate the effects of the modulation of kynurenine pathway on cardiac arrest outcome through genetic deletion of the rate-limiting enzyme of the pathway, indoleamine 2,3-dioxygenase. METHODS: Wild-type and indoleamine 2,3-dioxygenase-deleted (IDO-/-) mice were subjected to 8-min cardiac arrest. Survival, neurologic outcome, and locomotor activity were evaluated after resuscitation. Brain magnetic resonance imaging with diffusion tensor and diffusion-weighted imaging sequences was performed, together with microglia and macrophage activation and neurofilament light chain measurements. RESULTS: IDO-/- mice showed higher survival compared to wild-type mice (IDO-/- 11 of 16, wild-type 6 of 16, log-rank P = 0.036). Neurologic function was higher in IDO-/- mice than in wild-type mice after cardiac arrest (IDO-/- 9 ± 1, wild-type 7 ± 1, P = 0.012, n = 16). Indoleamine 2,3-dioxygenase deletion preserved locomotor function while maintaining physiologic circadian rhythm after cardiac arrest. Brain magnetic resonance imaging with diffusion tensor imaging showed an increase in mean fractional anisotropy in the corpus callosum (IDO-/- 0.68 ± 0.01, wild-type 0.65 ± 0.01, P = 0.010, n = 4 to 5) and in the external capsule (IDO-/- 0.47 ± 0.01, wild-type 0.45 ± 0.01, P = 0.006, n = 4 to 5) in IDO-/- mice compared with wild-type ones. Increased release of neurofilament light chain was observed in wild-type mice compared to IDO-/- (median concentrations [interquartile range], pg/mL: wild-type 1,138 [678 to 1,384]; IDO-/- 267 [157 to 550]; P < 0.001, n = 3 to 4). Brain magnetic resonance imaging with diffusion-weighted imaging revealed restriction of water diffusivity 24 h after cardiac arrest in wild-type mice; indoleamine 2,3-dioxygenase deletion prevented water diffusion abnormalities, which was reverted in IDO-/- mice receiving l-kynurenine (apparent diffusion coefficient, µm2/ms: wild-type, 0.48 ± 0.07; IDO-/-, 0.59 ± 0.02; IDO-/- and l-kynurenine, 0.47 ± 0.08; P = 0.007, n = 6). CONCLUSIONS: The kynurenine pathway represents a novel target to prevent post-cardiac arrest brain injury. The neuroprotective effects of indoleamine 2,3-dioxygenase deletion were associated with preservation of brain white matter microintegrity and with reduction of cerebral cytotoxic edema.


Assuntos
Lesões Encefálicas , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Camundongos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina , Imagem de Tensor de Difusão , Água
3.
J Neurotrauma ; 40(11-12): 1144-1163, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36576018

RESUMO

Mild traumatic brain injury (mTBI) mostly causes transient symptoms, but repeated (r)mTBI can lead to neurodegenerative processes. Diagnostic tools to evaluate the presence of ongoing occult neuropathology are lacking. In a mouse model of rmTBI, we investigated MRI and plasma biomarkers of brain damage before chronic functional impairment arose. Anesthetized adult male and female C57BL/6J mice were subjected to rmTBI or a sham procedure. Sensorimotor deficits were evaluated up to 12 months post-injury in SNAP and Neuroscore tests. Cognitive function was assessed in the novel object recognition test at six and 12 months. Diffusion tensor imaging (DTI) and structural magnetic resonance imaging (MRI) were performed at six and 12 months to examine white matter and structural damage. Plasma levels of neurofilament light (NfL) were assessed longitudinally up to 12 months. Brain histopathology was performed at 12 months. Independent groups of mice were used to examine the effects of 2-, 7- and 14-days inter-injury intervals on acute plasma NfL levels and on hyperactivity. Twelve months after an acute transient impairment, sensorimotor functions declined again in rmTBI mice (p < 0.001 vs sham), but not earlier. Similarly, rmTBI mice showed memory impairment at 12 (p < 0.01 vs sham) but not at 6 months. White matter damage examined by DTI was evident in rmTBI mice at both six and 12 months (p < 0.001 vs sham). This was associated with callosal atrophy (p < 0.001 vs sham) evaluated by structural MRI. Plasma NfL at one week was elevated in rmTBI (p < 0.001 vs sham), and its level correlated with callosal atrophy at 12 months (Pearson r = 0.72, p < 0.01). Histopathology showed thinning of the corpus callosum and marked astrogliosis in rmTBI mice. The NfL levels were higher in mice subjected to short (2 days) compared with longer (7 and 14 days) inter-injury intervals (p < 0.05), and this correlated with hyperactivity in mice (Pearson r = 0.50; p < 0.05). These findings show that rmTBI causes white matter pathology detectable by MRI before chronic functional impairment. Early quantification of plasma NfL correlates with the degree of white matter atrophy one year after rmTBI and can serve to monitor the brain's susceptibility to a second mTBI, supporting its potential clinical application to guide the return to practice in sport-related TBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Substância Branca , Ratos , Camundongos , Animais , Masculino , Feminino , Substância Branca/patologia , Imagem de Tensor de Difusão , Filamentos Intermediários , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Encéfalo/patologia , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/complicações
4.
Front Neurol ; 13: 855125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493836

RESUMO

Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However, multisite collaborative initiatives are inherently limited by hardware, software, and pulse and sequence design heterogeneities of both clinical and preclinical MRI scanners and the lack of benchmark for acquisition protocols, data analysis, and data sharing. We present the overarching vision that yielded to the constitution of RIN-Neuroimaging Network, a national consortium dedicated to identifying disease and subject-specific in-vivo neuroimaging biomarkers of diverse neurological and neuropsychiatric conditions. This ambitious goal needs efforts toward increasing the diagnostic and prognostic power of advanced MRI data. To this aim, 23 Italian Scientific Institutes of Hospitalization and Care (IRCCS), with technological and clinical specialization in the neurological and neuroimaging field, have gathered together. Each IRCCS is equipped with high- or ultra-high field MRI scanners (i.e., ≥3T) for clinical or preclinical research or has established expertise in MRI data analysis and infrastructure. The actions of this Network were defined across several work packages (WP). A clinical work package (WP1) defined the guidelines for a minimum standard clinical qualitative MRI assessment for the main neurological diseases. Two neuroimaging technical work packages (WP2 and WP3, for clinical and preclinical scanners) established Standard Operative Procedures for quality controls on phantoms as well as advanced harmonized quantitative MRI protocols for studying the brain of healthy human participants and wild type mice. Under FAIR principles, a web-based e-infrastructure to store and share data across sites was also implemented (WP4). Finally, the RIN translated all these efforts into a large-scale multimodal data collection in patients and animal models with dementia (i.e., case study). The RIN-Neuroimaging Network can maximize the impact of public investments in research and clinical practice acquiring data across institutes and pathologies with high-quality and highly-consistent acquisition protocols, optimizing the analysis pipeline and data sharing procedures.

5.
Brain Commun ; 4(2): fcac036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350551

RESUMO

Traumatic brain injury is increasingly common in older individuals. Older age is one of the strongest predictors for poor prognosis after brain trauma, a phenomenon driven by the presence of extra-cranial comorbidities as well as pre-existent pathologies associated with cognitive impairment and brain volume loss (such as cerebrovascular disease or age-related neurodegeneration). Furthermore, ageing is associated with a dysregulated immune response, which includes attenuated responses to infection and vaccination, and a failure to resolve inflammation leading to chronic inflammatory states. In traumatic brain injury, where the immune response is imperative for the clearance of cellular debris and survey of the injured milieu, an appropriate self-limiting response is vital to promote recovery. Currently, our understanding of age-related factors that contribute to the outcome is limited; but a more complete understanding is essential for the development of tailored therapeutic strategies to mitigate the consequences of traumatic brain injury. Here we show greater functional deficits, white matter abnormalities and worse long-term outcomes in aged compared with young C57BL/6J mice after either moderate or severe traumatic brain injury. These effects are associated with altered systemic, meningeal and brain tissue immune response. Importantly, the impaired acute systemic immune response in the mice was similar to the findings observed in our clinical cohort. Traumatic brain-injured patient cohort over 70 years of age showed lower monocyte and lymphocyte counts compared with those under 45 years. In mice, traumatic brain injury was associated with alterations in peripheral immune subsets, which differed in aged compared with adult mice. There was a significant increase in transcription of immune and inflammatory genes in the meninges post-traumatic brain injury, including monocyte/leucocyte-recruiting chemokines. Immune cells were recruited to the region of the dural injury, with a significantly higher number of CD11b+ myeloid cells in aged compared with the adult mice. In brain tissue, when compared with the young adult mice, we observed a more pronounced and widespread reactive astrogliosis 1 month after trauma in aged mice, sustained by an early and persistent induction of proinflammatory astrocytic state. These findings provide important insights regarding age-related exacerbation of neurological damage after brain trauma.

6.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388852

RESUMO

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Assuntos
Epilepsia , Microglia , Animais , Encéfalo , Células Endoteliais , Epilepsia/metabolismo , Camundongos , Microglia/metabolismo , Convulsões
7.
Brain ; 144(12): 3710-3726, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972208

RESUMO

Aggregation and cytoplasmic mislocalization of TDP-43 are pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal dementia spectrum. However, the molecular mechanism by which TDP-43 aggregates form and cause neurodegeneration remains poorly understood. Cyclophilin A, also known as peptidyl-prolyl cis-trans isomerase A (PPIA), is a foldase and molecular chaperone. We previously found that PPIA interacts with TDP-43 and governs some of its functions, and its deficiency accelerates disease in a mouse model of amyotrophic lateral sclerosis. Here we characterized PPIA knock-out mice throughout their lifespan and found that they develop a neurodegenerative disease with key behavioural features of frontotemporal dementia, marked TDP-43 pathology and late-onset motor dysfunction. In the mouse brain, deficient PPIA induces mislocalization and aggregation of the GTP-binding nuclear protein Ran, a PPIA interactor and a master regulator of nucleocytoplasmic transport, also for TDP-43. Moreover, in absence of PPIA, TDP-43 autoregulation is perturbed and TDP-43 and proteins involved in synaptic function are downregulated, leading to impairment of synaptic plasticity. Finally, we found that PPIA was downregulated in several patients with amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia, and identified a PPIA loss-of-function mutation in a patient with sporadic amyotrophic lateral sclerosis . The mutant PPIA has low stability, altered structure and impaired interaction with TDP-43. These findings strongly implicate that defective PPIA function causes TDP-43 mislocalization and dysfunction and should be considered in future therapeutic approaches.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ciclofilina A/genética , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Ciclofilina A/deficiência , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/patologia , Humanos , Camundongos , Camundongos Knockout
8.
Acta Neuropathol Commun ; 9(1): 76, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902685

RESUMO

Post-traumatic epilepsy (PTE) accounts for 5% of all epilepsies and 10-20% of the acquired forms. The latency between traumatic brain injury (TBI) and epilepsy onset in high-risk patients offers a therapeutic window for intervention to prevent or improve the disease course. However, progress towards effective treatments has been hampered by the lack of sensitive prognostic biomarkers of PTE, and of therapeutic targets. There is therefore a pressing clinical need for preclinical PTE models suitable for biomarker discovery and drug testing. We characterized in-depth a model of severe TBI induced by controlled cortical impact evolving into PTE in CD1 adult male mice. To identify sensitive measures predictive of PTE development and severity, TBI mice were longitudinally monitored by video-electrocorticography (ECoG), examined by MRI, and tested for sensorimotor and cognitive deficits and locomotor activity. At the end of the video-ECoG recording mice were killed for brain histological analysis. PTE occurred in 58% of mice with frequent motor seizures (one seizure every other day), as determined up to 5 months post-TBI. The weight loss of PTE mice in 1 week after TBI correlated with the number of spontaneous seizures at 5 months. Moreover, the recovery rate of the sensorimotor deficit detected by the SNAP test before the predicted time of epilepsy onset was significantly lower in PTE mice than in those without epilepsy. Neuroscore, beam walk and cognitive deficit were similar in all TBI mice. The increase in the contusion volume, the volume of forebrain regions contralateral to the lesioned hemisphere and white matter changes over time assessed by MRI were similar in PTE and no-PTE mice. However, brain histology showed a more pronounced neuronal cell loss in the cortex and hippocampus contralateral to the injured hemisphere in PTE than in no-PTE mice. The extensive functional and neuropathological characterization of this TBI model, provides a tool to identify sensitive measures of epilepsy development and severity clinically useful for increasing PTE prediction in high-risk TBI patients. The high PTE incidence and spontaneous seizures frequency in mice provide an ideal model for biomarker discovery and for testing new drugs.


Assuntos
Modelos Animais de Doenças , Descoberta de Drogas/métodos , Epilepsia Pós-Traumática/diagnóstico por imagem , Epilepsia Pós-Traumática/fisiopatologia , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/fisiopatologia , Eletrocorticografia/métodos , Masculino , Camundongos
9.
Neurobiol Dis ; 153: 105330, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711491

RESUMO

Traumatic brain injury (TBI) is associated with widespread tau pathology in about 30% of patients surviving late after injury. We previously found that TBI in mice induces the formation of an abnormal form of tau (tauTBI) which progressively spreads from the site of injury to remote brain regions. Intracerebral inoculation of TBI brain homogenates into naïve mice induced progressive tau pathology, synaptic loss and late cognitive decline, suggesting a pivotal role of tauTBI in post-TBI neurodegeneration. However, the possibility that tauTBI was a marker of TBI-associated neurodegeneration rather than a toxic driver of functional decline could not be excluded. Here we employed the nematode C. elegans as a biosensor to test the pathogenic role of TBI generated tau. The motility of this nematode depends on efficient neuromuscular transmission and is exceptionally sensitive to the toxicity of amyloidogenic proteins, providing a tractable model for our tests. We found that worms exposed to brain homogenates from chronic but not acute TBI mice, or from mice in which tauTBI had been transmitted by intracerebral inoculation, had impaired motility and neuromuscular synaptic transmission. Results were similar when worms were given brain homogenates from transgenic mice overexpressing tau P301L, a tauopathy mouse model, suggesting that TBI-induced and mutant tau have similar toxic properties. P301L brain homogenate toxicity was similar in wild-type and ptl-1 knock-out worms, indicating that the nematode tau homolog protein PTL-1 was not required to mediate the toxic effect. Harsh protease digestion to eliminate the protein component of the homogenates, pre-incubation with anti-tau antibodies or tau depletion by immunoprecipitation, abolished the toxicity. Homogenates of chronic TBI brains from tau knock-out mice were not toxic to C. elegans, whereas oligomeric recombinant tau was sufficient to impair their motility. This study indicates that tauTBI impairs motor activity and synaptic transmission in C. elegans and supports a pathogenic role of tauTBI in the long-term consequences of TBI. It also sets the groundwork for the development of a C. elegans-based platform for screening anti-tau compounds.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Caenorhabditis elegans , Atividade Motora/fisiologia , Doenças Neurodegenerativas/metabolismo , Junção Neuromuscular/metabolismo , Proteínas tau/metabolismo , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Camundongos , Doenças Neurodegenerativas/fisiopatologia , Junção Neuromuscular/fisiopatologia , Tauopatias/metabolismo , Tauopatias/fisiopatologia
10.
Br J Anaesth ; 126(1): 256-264, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977957

RESUMO

BACKGROUND: Whilst there has been progress in supportive treatment for traumatic brain injury (TBI), specific neuroprotective interventions are lacking. Models of ischaemic heart and brain injury show the therapeutic potential of argon gas, but it is still not known whether inhaled argon (iAr) is protective in TBI. We tested the effects of acute administration of iAr on brain oedema, tissue micro-environmental changes, neurological functions, and structural outcome in a mouse model of TBI. METHODS: Anaesthetised adult C57BL/6J mice were subjected to severe TBI by controlled cortical impact. Ten minutes after TBI, the mice were randomised to 24 h treatments with iAr 70%/O2 30% or air (iCtr). Sensorimotor deficits were evaluated up to 6 weeks post-TBI by three independent tests. Cognitive function was evaluated by Barnes maze test at 4 weeks. MRI was done to examine brain oedema at 3 days and white matter damage at 5 weeks. Microglia/macrophages activation and functional commitment were evaluated at 1 week after TBI by immunohistochemistry. RESULTS: iAr significantly accelerated sensorimotor recovery and improved cognitive deficits 1 month after TBI, with less white matter damage in the ipsilateral fimbria and body of the corpus callosum. Early changes underpinning protection included a reduction of pericontusional vasogenic oedema and of the inflammatory response. iAr significantly reduced microglial activation with increases in ramified cells and the M2-like marker YM1. CONCLUSIONS: iAr accelerates recovery of sensorimotor function and improves cognitive and structural outcome 1 month after severe TBI in adult mice. Early effects include a reduction of brain oedema and neuroinflammation in the contused tissue.


Assuntos
Argônio/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Argônio/administração & dosagem , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Inflamação/diagnóstico por imagem , Inflamação/tratamento farmacológico , Inflamação/etiologia , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Tempo
11.
J Thorac Oncol ; 15(3): 360-370, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31634668

RESUMO

INTRODUCTION: Serine/threonine kinase 11 (LKB1/STK11) is one of the most mutated genes in NSCLC accounting for approximately one-third of cases and its activity is impaired in approximately half of KRAS-mutated NSCLC. At present, these patients cannot benefit from any specific therapy. METHODS: Through CRISPR/Cas9 technology, we systematically deleted LKB1 in both wild-type (WT) and KRAS-mutated human NSCLC cells. By using these isogenic systems together with genetically engineered mouse models we investigated the cell response to ERK inhibitors both in vitro and in vivo. RESULTS: In all the systems used here, the loss of LKB1 creates vulnerability and renders these cells particularly sensitive to ERK inhibitors both in vitro and in vivo. The same cells expressing a WT LKB1 poorly respond to these drugs. At the molecular level, in the absence of LKB1, ERK inhibitors induced a marked inhibition of p90 ribosomal S6 kinase activation, which in turn abolished S6 protein activation, promoting the cytotoxic effect. CONCLUSIONS: This work shows that ERK inhibitors are effective in LKB1 and LKB1/KRAS-mutated tumors, thus offering a therapeutic strategy for this prognostically unfavorable subgroup of patients. Because ERK inhibitors are already in clinical development, our findings could be easily translatable to the clinic. Importantly, the lack of effect in cells expressing WT LKB1, predicts that treatment of LKB1-mutated tumors with ERK inhibitors should have a favorable toxicity profile.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas Serina-Treonina Quinases/genética
12.
J Clin Med ; 8(8)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366109

RESUMO

Traumatic brain injury (TBI) is a major cause of death and disability. Despite progress in neurosurgery and critical care, patients still lack a form of neuroprotective treatment that can counteract or attenuate injury progression. Inflammation after TBI is a key modulator of injury progression and neurodegeneration, but its spatiotemporal dissemination is only partially known. In vivo approaches to study post-traumatic inflammation longitudinally are pivotal for monitoring injury progression/recovery and the effectiveness of therapeutic approaches. Here, we provide a minimally invasive, highly sensitive in vivo molecular magnetic resonance imaging (MRI) characterization of endothelial activation associated to neuroinflammatory response after severe TBI in mice, using microparticles of iron oxide targeting P-selectin (MPIOs-α-P-selectin). Strong endothelial activation was detected from 24 h in perilesional regions, including the cortex and hippocampus, and peaked in intensity and diffusion at two days, then partially decreased but persisted up to seven days and was back to baseline 15 days after injury. There was a close correspondence between MPIOs-α-P-selectin signal voids and the P-selectin stained area, confirming maximal endothelial activation at two days. Molecular MRI markers of inflammation may thus represent a useful tool to evaluate in vivo endothelial activation in TBI and monitoring the responses to therapeutic agents targeting vascular activation and permeability.

13.
Sci Rep ; 9(1): 3580, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837662

RESUMO

Cardiac Magnetic Resonance (CMR) is the gold standard for left ventricular (LV) function assessment in small rodents and, though echocardiography (ECHO) has been proposed as an alternative method, LV volumes may be underestimated when marked eccentric remodeling is present. In the present study we described a novel echocardiographic method and we tested the agreement with CMR for LV volumes and ejection fraction calculation in mice with experimental myocardial infarction. Sham-operated and infarcted mice, subjected to Coronary Artery Ligation, underwent ECHO and CMR. Volumes and ejection fraction were calculated by ECHO using a standard Simpson's modified method (ECHO pLAX) or a method from sequential parasternal short axis (ECHO pSAX) acquired mechanically by translating the probe every 1 mm along the left ventricle. The mean differences ±1.96 standard deviation near to zero suggested close agreement between ECHO pSAX and CMR; contrarily ECHO pLAX agreement with CMR was lower. In addition, ECHO was three times shorter and cheaper (Relative cost difference: pLAX: -66% and pSAX -57%) than CMR. In conclusion, ECHO pSAX is a new, fast, cheap and accurate method for LV function assessment in mice.


Assuntos
Ecocardiografia , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Função Ventricular Esquerda , Animais , Camundongos
14.
Sci Rep ; 8(1): 9576, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934551

RESUMO

Glucose is the central nervous system's only energy source. Imaging techniques capable to detect pathological alterations of the brain metabolism are useful in different diagnostic processes. Such techniques are also beneficial for assessing the evaluation efficacy of therapies in pre-clinical and clinical stages of diseases. Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a possible alternative to positron emission tomography (PET) imaging that has been widely explored in cancer research in humans and animal models. We propose that pathological alterations in brain 2-deoxy-D-glucose (2DG) uptake, typical of neurodegenerative diseases, can be detected with CEST MRI. Transgenic mice overexpressing a mutated form of amyloid precusrsor protein (APP23), a model of Alzheimer's disease, analyzed with CEST MRI showed a clear reduction of 2DG uptake in different brain regions. This was reminiscent of the cerebral condition observed in Alzheimer's patients. The results indicate the feasibility of CEST for analyzing the brain metabolic state, with better image resolution than PET in experimental models.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Desoxiglucose/metabolismo , Imageamento por Ressonância Magnética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Transporte Biológico , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos
15.
Soft Matter ; 14(4): 558-565, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29333553

RESUMO

Polymer functionalization strategies have recently attracted considerable attention for several applications in biomaterials science. In particular, technological advancements in medical imaging have focused on the design of polymeric matrices to improve non-invasive approaches and diagnostic accuracy. In this scenario, the use of microwave irradiation of aqueous solutions containing appropriate combinations of polymers is gaining increasing interest in the synthesis of sterile hydrogels without using monomers, eliminating the need to remove unreacted species. In this study, we developed a method for the in situ fabrication of TEMPO-labeled hydrogels based on a one-pot microwave reaction that can then be tracked by magnetic resonance imaging (MRI) without using toxic compounds that could be hostile for the target tissue. Click chemistry was used to link TEMPO to the polymeric scaffold. In an in vivo model, the system was able to preserve its TEMPO paramagnetic activity up to 1 month after hydrogel injection, showing a clear detectable signal on T1-weighted MRI with a longitudinal relaxivity value of 0.29 mM s-1, comparable to a value of 0.31 mM s-1 characteristic of TEMPO application. The uncleavable conjugation between the contrast agent and the polymeric scaffold is a leading point to record these results: the use of TEMPO only physically entrapped in the polymeric scaffold did not show MRI traceability even after few hours. Moreover, the use of TEMPO-labeled hydrogels can also help to reduce the number of animals sacrificed being a longitudinal non-invasive technique.


Assuntos
Óxidos N-Cíclicos/química , Hidrogéis/química , Hidrogéis/síntese química , Imageamento por Ressonância Magnética , Micro-Ondas , Química Click , Polietilenoglicóis/química
16.
Exp Neurol ; 300: 167-178, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29126888

RESUMO

There is increasing recognition that traumatic brain injury (TBI) may initiate long-term neurodegenerative processes, particularly chronic traumatic encephalopathy. However, insight into the mechanisms transforming an initial biomechanical injury into a neurodegenerative process remain elusive, partly as a consequence of the paucity of informative pre-clinical models. This study shows the functional, whole brain imaging and neuropathological consequences at up to one year survival from single severe TBI by controlled cortical impact in mice. TBI mice displayed persistent sensorimotor and cognitive deficits. Longitudinal T2 weighted magnetic resonance imaging (MRI) showed progressive ipsilateral (il) cortical, hippocampal and striatal volume loss, with diffusion tensor imaging demonstrating decreased fractional anisotropy (FA) at up to one year in the il-corpus callosum (CC: -30%) and external capsule (EC: -21%). Parallel neuropathological studies indicated reduction in neuronal density, with evidence of microgliosis and astrogliosis in the il-cortex, with further evidence of microgliosis and astrogliosis in the il-thalamus. One year after TBI there was also a decrease in FA in the contralateral (cl) CC (-17%) and EC (-13%), corresponding to histopathological evidence of white matter loss (cl-CC: -68%; cl-EC: -30%) associated with ongoing microgliosis and astrogliosis. These findings indicate that a single severe TBI induces bilateral, long-term and progressive neuropathology at up to one year after injury. These observations support this model as a suitable platform for exploring the mechanistic link between acute brain injury and late and persistent neurodegeneration.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Progressão da Doença , Índice de Gravidade de Doença , Substância Branca/patologia , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Imagem de Tensor de Difusão/tendências , Imageamento por Ressonância Magnética/tendências , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Substância Branca/diagnóstico por imagem
17.
J Control Release ; 258: 121-129, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28501671

RESUMO

The failure of clinical trials largely focused on mild to moderate stages of Alzheimer disease has suggested to the scientific community that the effectiveness of Amyloid-ß (Aß)-centered treatments should be evaluated starting as early as possible, well before irreversible brain damage has occurred. Accordingly, also the preclinical development of new therapies should be carried out taking into account this suggestion. In the present investigation we evaluated the efficacy of a treatment with liposomes multifunctionalized for crossing the blood-brain barrier and targeting Aß, carried out on young APP/PS1 Tg mice, taken as a model of pre-symptomatic disease stage. Liposomes were administered once a week to Tg mice for 7months, starting at the age of 5months and up to the age of 12 when they display AD-like cognitive and brain biochemical/anatomical features. The treatment prevented the onset of the long-term memory impairment and slowed down the deposition of brain Aß; at anatomical level, prevented both ventricle enlargement and entorhinal cortex thickness reduction, otherwise occurring in untreated mice. Strikingly, these effects were maintained 3months after treatment discontinuation. An increase of Aß levels in the liver was detected at the end of the treatment, then followed also by reduction of brain Amyloid Precursor Protein and increase of Aß-degrading enzymes. These results suggest that the treatment promotes brain Aß clearance by a peripheral 'sink' effect and ultimately affects Aß turnover in the brain. Worth of note, the treatment was apparently not toxic for all the organs analyzed, in particular for brain, as suggested by the lower brain TNF-α and MDA levels, and by higher level of SOD activity in treated mice. Together, these findings promote a very early treatment with multi-functional liposomes as a well-tolerated nanomedicine-based approach, potentially suitable for a disease-modifying therapy of AD, able to delay or prevent relevant features of the disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Apolipoproteínas E/uso terapêutico , Encéfalo/efeitos dos fármacos , Lipossomos/uso terapêutico , Transtornos da Memória/prevenção & controle , Ácidos Fosfatídicos/uso terapêutico , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteínas E/administração & dosagem , Apolipoproteínas E/química , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Lipossomos/química , Masculino , Transtornos da Memória/complicações , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Ácidos Fosfatídicos/administração & dosagem , Ácidos Fosfatídicos/química
18.
Sci Rep ; 6: 30343, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27456060

RESUMO

Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions.


Assuntos
Aldeído Oxirredutases/metabolismo , Distribuição da Gordura Corporal , Ritmo Circadiano , Flavoproteínas/metabolismo , Locomoção , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Aldeído Oxirredutases/genética , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Flavoproteínas/genética , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Transcriptoma
19.
Nanomedicine (Lond) ; 11(6): 643-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27003295

RESUMO

AIM: With the rise in production of nanoparticles (NPs) for an ever-increasing number of applications, there is an urgent need to efficiently assess their potential toxicity. We propose a NP hazard assessment protocol that combines mammalian cytotoxicity data with embryonic vertebrate abnormality scoring to determine an overall toxicity index. RESULTS: We observed that, after exposure to a range of NPs, Xenopus phenotypic scoring showed a strong correlation with cell based in vitro assays. Magnetite-cored NPs, negative for toxicity in vitro and Xenopus, were further confirmed as nontoxic in mice. CONCLUSION: The results highlight the potential of Xenopus embryo analysis as a fast screening approach for toxicity assessment of NPs, which could be introduced for the routine testing of nanomaterials.


Assuntos
Nanopartículas/toxicidade , Testes de Toxicidade/métodos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/toxicidade , Humanos , Camundongos , Xenopus laevis/embriologia
20.
Mol Cancer Ther ; 15(1): 125-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26494857

RESUMO

The antitumor activity of angiogenesis inhibitors is reinforced in combination with chemotherapy. It is debated whether this potentiation is related to a better drug delivery to the tumor due to the antiangiogenic effects on tumor vessel phenotype and functionality. We addressed this question by combining bevacizumab with paclitaxel on A2780-1A9 ovarian carcinoma and HT-29 colon carcinoma transplanted ectopically in the subcutis of nude mice and on A2780-1A9 and IGROV1 ovarian carcinoma transplanted orthotopically in the bursa of the mouse ovary. Paclitaxel concentrations together with its distribution by MALDI mass spectrometry imaging (MALDI MSI) were measured to determine the drug in different areas of the tumor, which was immunostained to depict vessel morphology and tumor proliferation. Bevacizumab modified the vessel bed, assessed by CD31 staining and dynamic contrast enhanced MRI (DCE-MRI), and potentiated the antitumor activity of paclitaxel in all the models. Although tumor paclitaxel concentrations were lower after bevacizumab, the drug distributed more homogeneously, particularly in vascularized, non-necrotic areas, and was cleared more slowly than controls. This happened specifically in tumor tissue, as there was no change in paclitaxel pharmacokinetics or drug distribution in normal tissues. In addition, the drug concentration and distribution were not influenced by the site of tumor growth, as A2780-1A9 and IGROV1 growing in the ovary gave results similar to the tumor growing subcutaneously. We suggest that the changes in the tumor microenvironment architecture induced by bevacizumab, together with the better distribution of paclitaxel, may explain the significant antitumor potentiation by the combination.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Paclitaxel/farmacologia , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Animais , Bevacizumab/administração & dosagem , Bevacizumab/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/patologia , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA