Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Affect Disord ; 350: 89-101, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220097

RESUMO

INTRODUCTION: Developmental changes due to early life variations in the serotonin system affect stress-related behavior and neuroplasticity in adulthood. These outcomes can be caused both by offspring's own and maternal serotonergic genotype. We aimed to dissociate the contribution of the own genotype from the influences of mother genotype. METHODS: Sixty-six male homozygous (5-HTT-/-) and heterozygous (5-HTT+/-) serotonin transporter knockout and wild-type rats from constant 5-HTT genotype mothers crossed with varying 5-HTT genotype fathers were subjected to tests assessing anxiety- and depression-like behaviors. Additionally, we measured plasma corticosterone levels and mRNA levels of BDNF, GABA system and HPA-axis components in the prelimbic and infralimbic cortex. Finally, we assessed the effect of paternal 5-HTT genotype on these measurements in 5-HTT+/- offspring receiving their knockout allele from their mother or father. RESULTS: 5-HTT-/- offspring exhibited increased anxiety- and depression-like behavior in the elevated plus maze and sucrose preference test. Furthermore, Bdnf isoform VI expression was reduced in the prelimbic cortex. Bdnf isoform IV and GABA related gene expression was also altered but did not survive false discovery rate (FDR) correction. Finally, 5-HTT+/- offspring from 5-HTT-/- fathers displayed higher levels of anxiety- and depression-like behavior and changes in GABA, BDNF and HPA-axis related gene expression not surviving FDR correction. LIMITATIONS: Only male offspring was tested. CONCLUSIONS: Offspring's own 5-HTT genotype influences stress-related behaviors and Bdnf isoform VI expression, independently of maternal 5-HTT genotype. Paternal 5-HTT genotype separately influenced these outcomes. These findings advance our understanding of the 5-HTT genotype dependent susceptibility to stress-related disorders.


Assuntos
Ansiedade , Depressão , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Masculino , Ratos , Ansiedade/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/genética , Ácido gama-Aminobutírico , Genótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
2.
Front Behav Neurosci ; 16: 924603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898652

RESUMO

In preclinical psychiatry research, animals are central to modeling and understanding biological mechanisms of behavior and psychiatric disorders. We here present the first multimodal severity assessment of a genetically modified rat strain used in psychiatric research, lacking the dopamine transporter (DAT) gene and showing endophenotypes of several dopamine-associated disorders. Absence of the DAT leads to high extracellular dopamine (DA) levels and has been associated with locomotor hyperactivity, compulsive behaviors and stereotypies in the past. The German Animal Welfare Law, which is based on the EU Directive (2010/63/EU), requires a prospective severity assessment for every animal experiment, depending on the extent of the expected degree of pain, suffering, distress or lasting harm that the animals will experience. This should consider all procedures but also the impact of the genotype on the phenotype. Therefore, we examined multiple parameters indicating animal welfare, like burrowing behavior, social interaction, saccharin preference, baseline stress hormone levels and nesting behavior. Additionally, a footprint analysis was performed and home cage activity was analyzed for a more detailed characterization of locomotion. DAT KO rats demonstrated reduced burrowing, social interaction and saccharin preference. We also found pronounced stereotypies and alterations in the gait analysis in DAT KO rats. Moreover, we confirmed the hyperactivity and the impaired sensorimotor gating mechanisms to assure that our rats are exhibiting the correct phenotype. In conclusion, we provide evidence that DAT KO rats show alterations in natural behavior patterns and deduce that the marked stereotypies are a sign for coping difficulties, both indicating a negative influence of the genotype on wellbeing. We suggest to assess further rat models in an objectified severity assessment as previously done in mice to create a relative severity assessment based on scientific evidence. Until then, we propose the classification of homozygous DAT KO rats as "moderate" in accordance with the criteria of the EU directive 2010/63.

3.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563331

RESUMO

Serotonin is synthetized through the action of tryptophan hydroxylase (TPH) enzymes. While the TPH2 isoform is responsible for the production of serotonin in the brain, TPH1 is expressed in peripheral organs. Interestingly, despite its peripheral localization, alterations of the gene coding for TPH1 have been related to stress sensitivity and an increased susceptibility for psychiatric pathologies. On these bases, we took advantage of newly generated TPH1-/- rats, and we evaluated the impact of the lack of peripheral serotonin on the behavior and expression of brain plasticity-related genes under basal conditions and in response to stress. At a behavioral level, TPH1-/- rats displayed reduced anxiety-like behavior. Moreover, we found that neuronal activation, quantified by the expression of Bdnf and the immediate early gene Arc and transcription of glucocorticoid responsive genes after 1 h of acute restraint stress, was blunted in TPH1-/- rats in comparison to TPH1+/+ animals. Overall, we provided evidence for the influence of peripheral serotonin levels in modulating brain functions under basal and dynamic situations.


Assuntos
Serotonina , Triptofano Hidroxilase , Animais , Ansiedade/genética , Ansiedade/metabolismo , Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Serotonina/genética , Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
4.
Mol Psychiatry ; 27(4): 2329-2339, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246636

RESUMO

Silencing of dopamine transporter (DAT), a main controlling factor of dopaminergic signaling, results in biochemical and behavioral features characteristic for neuropsychiatric diseases with presumed hyperdopaminergia including schizophrenia, attention deficit hyperactivity disorder (ADHD), bipolar disorder, and obsessive-compulsive disorder (OCD). Investigation of DAT silencing thus provides a transdiagnostic approach towards a systems-level understanding of common underlying pathways. Using a high-field multimodal imaging approach and a highly sensitive cryogenic coil, we integrated structural, functional and metabolic investigations in tandem with behavioral assessments on a newly developed preclinical rat model, comparing DAT homozygous knockout (DAT-KO, N = 14), heterozygous knockout (N = 8) and wild-type male rats (N = 14). We identified spatially distributed structural and functional brain alterations encompassing motor, limbic and associative loops that demonstrated strong behavioral relevance and were highly consistent across imaging modalities. DAT-KO rats manifested pronounced volume loss in the dorsal striatum, negatively correlating with cerebellar volume increase. These alterations were associated with hyperlocomotion, repetitive behavior and loss of efficient functional small-world organization. Further, prefrontal and midbrain regions manifested opposite changes in functional connectivity and local network topology. These prefrontal disturbances were corroborated by elevated myo-inositol levels and increased volume. To conclude, our imaging genetics approach provides multimodal evidence for prefrontal-midbrain decoupling and striato-cerebellar neuroplastic compensation as two key features of constitutive DAT blockade, proposing them as transdiagnostic mechanisms of hyperdopaminergia. Thus, our study connects developmental DAT blockade to systems-level brain changes, underlying impaired action inhibition control and resulting in motor hyperactivity and compulsive-like features relevant for ADHD, schizophrenia and OCD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Proteínas da Membrana Plasmática de Transporte de Dopamina , Animais , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Hipercinese/metabolismo , Masculino , Mesencéfalo/metabolismo , Ratos
5.
Transl Psychiatry ; 9(1): 84, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30745561

RESUMO

Efavirenz is recommended as a preferred first-line drug for women of childbearing potential living with human immunodeficiency virus. Efavirenz is known for its central nervous system side effects, which are partly mediated by serotonergic actions. The neurotransmitter serotonin exerts neurotrophic effects during neurodevelopment and antenatal exposure to serotonergic agents has been linked to developmental delay. Although the teratogenic risks of efavirenz appear to be minimal, data on long-term developmental effects remain scarce. Here, we aimed to investigate the short- and long-term behavioral and neurodevelopmental effects of perinatal efavirenz exposure. We treated pregnant rats from gestation day 1 until postnatal day 7 with efavirenz (100 mg/kg) or vehicle. We measured behavioral outcomes in male offspring during the first 3 postnatal weeks, adolescence and adulthood, and conducted brain immunohistochemistry analyses after sacrifice. Perinatal efavirenz exposure resulted in reduced body weight and delayed reflex and motor development. During adulthood, we observed a decrease in the total number of cells and mature neurons in the motor cortex, as well as an increase in the number of Caspase-3-positive cells and serotonergic fibers. Together, our data show a developmental delay and persistent changes in the brain motor cortex of rats exposed to efavirenz perinatally. Because over 1 million children born annually are exposed to antiretroviral therapy, our findings underline the need for clinical studies on long-term neurodevelopmental outcomes of perinatal exposure to efavirenz.


Assuntos
Benzoxazinas/farmacologia , Deficiências do Desenvolvimento/induzido quimicamente , Neurônios/citologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Alcinos , Animais , Peso Corporal/efeitos dos fármacos , Ciclopropanos , Feminino , Infecções por HIV/tratamento farmacológico , Masculino , Atividade Motora/efeitos dos fármacos , Córtex Motor/citologia , Córtex Motor/patologia , Neurônios/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Reflexo de Sobressalto , Serotonina/metabolismo
6.
Mol Neurobiol ; 56(2): 1405-1420, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29948943

RESUMO

Proper development of the medial prefrontal cortex (mPFC), crucial for correct cognitive functioning, requires projections from, among others, the serotonergic (5-HT) and catecholaminergic systems, but it is unclear how these systems influence each other during development. Here, we describe the parallel development of the 5-HT and catecholaminergic prefrontal projection systems in rat and demonstrate a close engagement of both systems in the proximity of Cajal-Retzius cells. We further show that in the absence of the 5-HT transporter (5-HTT), not only the developing 5-HT but also the catecholaminergic system, including their projections towards the mPFC, are affected. In addition, the layer identity of the mPFC neurons and reelin-positive interneuron number and integration are altered in the absence of the 5-HTT. Together, our data demonstrate a functional interplay between the developing mPFC 5-HT and catecholaminergic systems, and call for a holistic approach in studying neurotransmitter systems-specific developmental consequences for adult behavior, to eventually allow the design of better treatment strategies for neuropsychiatric disorders.


Assuntos
Córtex Pré-Frontal/metabolismo , Núcleos da Rafe/metabolismo , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Animais , Masculino , Neurônios/metabolismo , Neurônios/patologia , Neurotransmissores/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/patologia , Núcleos da Rafe/patologia , Ratos Wistar , Proteína Reelina
7.
Neuropharmacology ; 109: 96-111, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27208789

RESUMO

While there is strong evidence from rodent and human studies that a reduction in serotonin transporter (5-HTT) function in early-life can increase the risk for several neuropsychiatric disorders in adulthood, the effects of reduced 5-HTT function on behavior across developmental stages are underinvestigated. To elucidate how perinatal pharmacological and lifelong genetic inactivation of the 5-HTT affects behavior across development, we conducted a battery of behavioral tests in rats perinatally exposed to fluoxetine or vehicle and in 5-HTT(-/-) versus 5-HTT(+/+) rats. We measured motor-related behavior, olfactory function, grooming behavior, sensorimotor gating, object directed behavior and novel object recognition in the first three postnatal weeks and if possible the tests were repeated in adolescence and adulthood. We also measured developmental milestones such as eye opening, reflex development and body weight. We observed that both pharmacological and genetic inactivation of 5-HTT resulted in a developmental delay. Except for hypo-locomotion, most of the observed early-life effects were normalized later in life. In adolescence and adulthood we observed object directed behavior and decreased novel object recognition in the 5-HTT(-/-) rats, which might be related to the lifelong inactivation of 5-HTT. Together, these data provide an important contribution to the understanding of the effects of perinatal and lifelong 5-HTT inactivation on behavior across developmental stages.


Assuntos
Deficiências do Desenvolvimento/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Animais , Deficiências do Desenvolvimento/induzido quimicamente , Deficiências do Desenvolvimento/genética , Feminino , Técnicas de Silenciamento de Genes/métodos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Distribuição Aleatória , Ratos , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
8.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1164-73, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26386116

RESUMO

Increased serotonin serum levels have been proposed to play a key role in pulmonary arterial hypertension (PAH) by regulating vessel tone and vascular smooth muscle cell proliferation. An intact serotonin system, which critically depends on a normal function of the serotonin transporter (SERT), is required for the development of experimental pulmonary hypertension in rodents exposed to hypoxia or monocrotaline. While these animal models resemble human PAH only with respect to vascular media remodeling, we hypothesized that SERT is likewise required for the presence of lumen-obliterating intima remodeling, a hallmark of human PAH reproduced in the Sugen hypoxia (SuHx) rat model of severe angioproliferative pulmonary hypertension. Therefore, SERT wild-type (WT) and knockout (KO) rats were exposed to the SuHx protocol. SERT KO rats, while completely lacking SERT, were hemodynamically indistinguishable from WT rats. After exposure to SuHx, similar degrees of severe angioproliferative pulmonary hypertension and right ventricular hypertrophy developed in WT and KO rats (right ventricular systolic pressure 60 vs. 55 mmHg, intima thickness 38 vs. 30%, respectively). In conclusion, despite its implicated importance in PAH, SERT does not play an essential role in the pathogenesis of severe angioobliterative pulmonary hypertension in rats exposed to SuHx.


Assuntos
Hipertensão Pulmonar/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Animais , Hipóxia Celular , Técnicas de Inativação de Genes , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Masculino , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Remodelação Vascular
9.
Front Cell Neurosci ; 7: 143, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24109430

RESUMO

Besides its "classical" neurotransmitter function, serotonin (5-HT) has been found to also act as a neurodevelopmental signal. During development, the 5-HT projection system, besides an external placental source, represents one of the earliest neurotransmitter systems to innervate the brain. One of the targets of the 5-HT projection system, originating in the brainstem raphe nuclei, is the medial prefrontal cortex (mPFC), an area involved in higher cognitive functions and important in the etiology of many neurodevelopmental disorders. Little is known, however, about the exact role of 5-HT and its signaling molecules in the formation of the raphe-prefrontal network. Using explant essays, we here studied the role of the 5-HT transporter (5-HTT), an important modulator of the 5-HT signal, in rostral raphe-prefrontal network formation. We found that the chemotrophic nature of the interaction between the origin (rostral raphe cluster) and a target (mPFC) of the 5-HT projection system was affected in rats lacking the 5-HTT (5-HTT(-/-)). While 5-HTT deficiency did not affect the dorsal raphe 5-HT-positive outgrowing neurites, the median raphe 5-HT neurites switched from a strong repulsive to an attractive interaction when co-cultured with the mPFC. Furthermore, the fasciculation of the mPFC outgrowing neurites was dependent on the amount of 5-HTT. In the mPFC of 5-HTT(-/-) pups, we observed clear differences in 5-HT innervation and the identity of a class of projection neurons of the mPFC. In the absence of the 5-HTT, the 5-HT innervation in all subareas of the early postnatal mPFC increased dramatically and the number of Satb2-positive callosal projection neurons was decreased. Together, these results suggest a 5-HTT dependency during early development of these brain areas and in the formation of the raphe-prefrontal network. The tremendous complexity of the 5-HT projection system and its role in several neurodevelopmental disorders highlights the need for further research in this largely unexplored area.

10.
Mol Neurobiol ; 48(1): 244-56, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23564488

RESUMO

It is well established that alterations of the serotoninergic system may contribute to the pathophysiology of mood disorders. Accordingly, it has been demonstrated that genetic deletion of the serotonin transporter (SERT) in rodents leads to an anxious and depressive phenotype, which is also associated with reduced neuronal plasticity. Indeed, we have demonstrated that adult SERT(-/-) animals show decreased brain-derived neurotrophic factor (BDNF) expression, as well as reduced levels of transcription factor regulating the neurotrophin transcription. While these changes may represent long-term consequences of impaired function of the transporter during development, no information exists with respect to the developmental profile of such changes. Using SERT(-/-) rats at different ages, we found that the impairment in neuroplasticity originates early in development and worsens during the first 3 weeks of life. Indeed, we observed that BDNF expression was reduced at birth and that the magnitude of these changes became more pronounced starting from PND21, being sustained by epigenetic mechanisms as well as alterations in the expression of specific transcription factors, including Npas4 and CaRF. These results suggest that an impairment of SERT may affect BDNF expression throughout postnatal development. These early changes may increase stress susceptibility during critical windows of brain maturation, which may eventually lead to the heightened predisposition to mood disorders found in individual carrying genetic variants of the serotonin transporter.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Éxons/genética , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
PLoS One ; 6(5): e19600, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21573180

RESUMO

Current epidemic obesity levels apply great medical and financial pressure to the strenuous economy of obesity-prone cultures, and neuropeptides involved in body weight regulation are regarded as attractive targets for a possible treatment of obesity in humans. The lateral hypothalamus and the nucleus accumbens shell (AcbSh) form a hypothalamic-limbic neuropeptide feeding circuit mediated by Melanin-Concentrating Hormone (MCH). MCH promotes feeding behavior via MCH receptor-1 (MCH1R) in the AcbSh, although this relationship has not been fully characterized. Given the AcbSh mediates reinforcing properties of food, we hypothesized that MCH modulates motivational aspects of feeding.Here we show that chronic loss of the rat MCH-precursor Pmch decreased food intake predominantly via a reduction in meal size during rat development and reduced high-fat food-reinforced operant responding in adult rats. Moreover, acute AcbSh administration of Neuropeptide-GE and Neuropeptide-EI (NEI), both additional neuropeptides derived from Pmch, or chronic intracerebroventricular infusion of NEI, did not affect feeding behavior in adult pmch(+/+) or pmch(-/-) rats. However, acute administration of MCH to the AcbSh of adult pmch(-/-) rats elevated feeding behavior towards wild type levels. Finally, adult pmch(-/-) rats showed increased ex vivo electrically evoked dopamine release and increased limbic dopamine transporter levels, indicating that chronic loss of Pmch in the rat affects the limbic dopamine system.Our findings support the MCH-MCH1R system as an amplifier of consummatory behavior, confirming this system as a possible target for the treatment of obesity. We propose that MCH-mediated signaling in the AcbSh positively mediates motivational aspects of feeding behavior. Thereby it provides a crucial signal by which hypothalamic neural circuits control energy balance and guide limbic brain areas to enhance motivational or incentive-related aspects of food consumption.


Assuntos
Comportamento Alimentar/fisiologia , Hormônios Hipotalâmicos/deficiência , Hormônios Hipotalâmicos/metabolismo , Motivação/fisiologia , Precursores de Proteínas/deficiência , Precursores de Proteínas/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Dopamina/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Hiperfagia/fisiopatologia , Hormônios Hipotalâmicos/administração & dosagem , Hormônios Hipotalâmicos/farmacologia , Injeções Intraventriculares , Melaninas/administração & dosagem , Melaninas/farmacologia , Motivação/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacologia , Hormônios Hipofisários/administração & dosagem , Hormônios Hipofisários/farmacologia , Ratos , Reforço Psicológico
12.
Psychopharmacology (Berl) ; 217(3): 419-32, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21487650

RESUMO

RATIONALE: Fluoxetine (Prozac®) is the most frequently prescribed drug to battle depression in pregnant women, but its safety in the unborn child has not yet been established. Fluoxetine, a selective serotonin reuptake inhibitor, crosses the placenta, leading to increased extracellular serotonin levels and potentially neurodevelopmental changes in the fetus. OBJECTIVES: The purpose of this study was to elucidate the long-term consequences of prenatal fluoxetine in rats. METHODS: Pregnant rats were injected daily with 12 mg/kg fluoxetine or vehicle from gestational day 11 until birth, and the behavior of the offspring was monitored. RESULTS: Plasma fluoxetine transfer from mother to pup was 83%, and high levels of fluoxetine (13.0 µg/g) were detected in the pup brain 5 h after the last injection. Fluoxetine-treated dams gave birth to litters 15% smaller than usual and to pups of reduced weight (until postnatal day 7). Furthermore, prenatal fluoxetine exposure significantly increased anxiety in the novelty-suppressed feeding test, the footshock-induced conditioned place aversion test, and the elevated plus maze test (following footshock pre-exposure) during adulthood, and also significantly decreased components of social play behavior at 4 weeks of age, and a strong tendency for increased self-grooming and making less contact in adults. Behavioral despair, anhedonia, and sexual behavior were not different between treatment groups. Finally, the hypothermic response to the 5-HT(1A) agonist flesinoxan was observed at a lower dose in prenatally fluoxetine-exposed rats than in controls. CONCLUSIONS: Prenatal fluoxetine exposure in rats leads to detrimental behavioral outcomes in later life, which may partly be due to altered 5-HT(1A) receptor signaling.


Assuntos
Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Fluoxetina/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Animais , Ansiedade/psicologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Feminino , Fluoxetina/administração & dosagem , Fluoxetina/sangue , Masculino , Troca Materno-Fetal , Aprendizagem em Labirinto/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/sangue , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Social , Natação
13.
Malar J ; 9: 22, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20085659

RESUMO

BACKGROUND: Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density), fungus (species and concentration) and environmental effects (exposure duration and food availability) influence larval mortality caused by fungus, was studied. METHODS: Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. RESULTS: Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR) <1) compared to Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR < 1). The effect of increase in fungus concentration on larval mortality was influenced by spore clumping. One day exposure to fungal spores was found to be equally effective as seven days exposure. In different exposure time treatments 0 - 4.9% of the total larvae, exposed to fungus, showed infection at either the pupal or adult stage. Mortality rate increased with increasing larval density and amount of available food. CONCLUSIONS: This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional increase and decrease in mortality rate, respectively, because the spores clumped together. As a result spores did not provide uniform coverage over space and time. It is, therefore, necessary to develop a formulation that allows the spores to spread over the water surface. Apart from formulation appropriate delivery methods are also necessary to avoid exposing non-target organisms to fungus.


Assuntos
Anopheles/microbiologia , Beauveria/patogenicidade , Metarhizium/patogenicidade , Micoses/veterinária , Controle Biológico de Vetores/métodos , Esporos Fúngicos/patogenicidade , Animais , Larva/microbiologia , Micoses/mortalidade , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA