Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Process ; 10(1): 1, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425642

RESUMO

There is an unprecedented array of new satellite technologies with capabilities for advancing our understanding of ecological processes and the changing composition of the Earth's biosphere at scales from local plots to the whole planet. We identified 48 instruments and 13 platforms with multiple instruments that are of broad interest to the environmental sciences that either collected data in the 2000s, were recently launched, or are planned for launch in this decade. We have restricted our review to instruments that primarily observe terrestrial landscapes or coastal margins and are available under free and open data policies. We focused on imagers that passively measure wavelengths in the reflected solar and emitted thermal spectrum. The suite of instruments we describe measure land surface characteristics, including land cover, but provide a more detailed monitoring of ecosystems, plant communities, and even some species then possible from historic sensors. The newer instruments have potential to greatly improve our understanding of ecosystem functional relationships among plant traits like leaf mass area (LMA), total nitrogen content, and leaf area index (LAI). They provide new information on physiological processes related to photosynthesis, transpiration and respiration, and stress detection, including capabilities to measure key plant and soil biophysical properties. These include canopy and soil temperature and emissivity, chlorophyll fluorescence, and biogeochemical contents like photosynthetic pigments (e.g., chlorophylls, carotenoids, and phycobiliproteins from cyanobacteria), water, cellulose, lignin, and nitrogen in foliar proteins. These data will enable us to quantify and characterize various soil properties such as iron content, several types of soil clays, organic matter, and other components. Most of these satellites are in low Earth orbit (LEO), but we include a few in geostationary orbit (GEO) because of their potential to measure plant physiological traits over diurnal periods, improving estimates of water and carbon budgets. We also include a few spaceborne active LiDAR and radar imagers designed for quantifying surface topography, changes in surface structure, and 3-dimensional canopy properties such as height, area, vertical profiles, and gap structure. We provide a description of each instrument and tables to summarize their characteristics. Lastly, we suggest instrument synergies that are likely to yield improved results when data are combined.

2.
Remote Sens Environ ; 2312019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33414568

RESUMO

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF - especially from space - is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using highly-resolved spectral sensors and state-of-the-art algorithms to distinguish the emission from reflected and/or scattered ambient light. Because the red to far-red SIF emission is detectable non-invasively, it may be sampled repeatedly to acquire spatio-temporally explicit information about photosynthetic light responses and steady-state behaviour in vegetation. Progress in this field is accelerating with innovative sensor developments, retrieval methods, and modelling advances. This review distills the historical and current developments spanning the last several decades. It highlights SIF heritage and complementarity within the broader field of fluorescence science, the maturation of physiological and radiative transfer modelling, SIF signal retrieval strategies, techniques for field and airborne sensing, advances in satellite-based systems, and applications of these capabilities in evaluation of photosynthesis and stress effects. Progress, challenges, and future directions are considered for this unique avenue of remote sensing.

3.
Glob Chang Biol ; 24(7): 2980-2996, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29460467

RESUMO

Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic conditions from remote sensing of SIF.


Assuntos
Clorofila/fisiologia , Florestas , Fotossíntese/fisiologia , Pinus taeda/fisiologia , Folhas de Planta/fisiologia , Fluorescência , North Carolina , Desenvolvimento Vegetal
4.
Remote Sens (Basel) ; 10(10): 1551, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36081617

RESUMO

Estimates of Sun-Induced vegetation chlorophyll Fluorescence (SIF) using remote sensing techniques are commonly determined by exploiting solar and/or telluric absorption features. When SIF is retrieved in the strong oxygen (O2) absorption features, atmospheric effects must always be compensated. Whereas correction of atmospheric effects is a standard airborne or satellite data processing step, there is no consensus regarding whether it is required for SIF proximal-sensing measurements nor what is the best strategy to be followed. Thus, by using simulated data, this work provides a comprehensive analysis about how atmospheric effects impact SIF estimations on proximal sensing, regarding: (1) the sensor height above the vegetated canopy; (2) the SIF retrieval technique used, e.g., Fraunhofer Line Discriminator (FLD) family or Spectral Fitting Methods (SFM); and (3) the instrument's spectral resolution. We demonstrate that for proximal-sensing scenarios compensating for atmospheric effects by simply introducing the O2 transmittance function into the FLD or SFM formulations improves SIF estimations. However, these simplistic corrections still lead to inaccurate SIF estimations due to the multiplication of spectrally convolved atmospheric transfer functions with absorption features. Consequently, a more rigorous oxygen compensation strategy is proposed and assessed by following a classic airborne atmospheric correction scheme adapted to proximal sensing. This approach allows compensating for the O2 absorption effects and, at the same time, convolving the high spectral resolution data according to the corresponding Instrumental Spectral Response Function (ISRF) through the use of an atmospheric radiative transfer model. Finally, due to the key role of O2 absorption on the evaluated proximal-sensing SIF retrieval strategies, its dependency on surface pressure (p) and air temperature (T) was also assessed. As an example, we combined simulated spectral data with p and T measurements obtained for a one-year period in the Hyytiälä Forestry Field Station in Finland. Of importance hereby is that seasonal dynamics in terms of T and p, if not appropriately considered as part of the retrieval strategy, can result in erroneous SIF seasonal trends that mimic those of known dynamics for temperature-dependent physiological responses of vegetation.

5.
Remote Sens (Basel) ; 9(5): 412, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-29651338

RESUMO

The Earth Observing One (EO-1) satellite has completed 16 years of Earth observations in early 2017. What started as a technology mission to test various new advancements turned into a science and application mission that extended many years beyond the satellite's planned life expectancy. EO-1's primary instruments are spectral imagers: Hyperion, the only civilian full spectrum spectrometer (430-2400 nm) in orbit; and the Advanced Land Imager (ALI), the prototype for Landsat-8's pushbroom imaging technology. Both Hyperion and ALI instruments have continued to perform well, but in February 2011 the satellite ran out of the fuel necessary to maintain orbit, which initiated a change in precession rate that led to increasingly earlier equatorial crossing times during its last five years. The change from EO-1's original orbit, when it was formation flying with Landsat-7 at a 10:01am equatorial overpass time, to earlier overpass times results in image acquisitions with increasing solar zenith angles (SZAs). In this study, we take several approaches to characterize data quality as SZAs increased. Our results show that for both EO-1 sensors, atmospherically corrected reflectance products are within 5 to 10% of mean pre-drift products. No marked trend in decreasing quality in ALI or Hyperion is apparent through 2016, and these data remain a high quality resource through the end of the mission.

7.
Appl Opt ; 45(5): 1023-33, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16512546

RESUMO

Active fluorescence (F) sensing systems have long been suggested as a means to identify species composition and determine physiological status of plants. Passive F systems for large-scale remote assessment of vegetation will undoubtedly rely on solar-induced F (SIF), and this information could potentially be obtained from the Fraunhofer line depth (FLD) principle. However, understanding the relationships between the information and knowledge gained from active and passive systems remains to be addressed. Here we present an approach in which actively induced F spectral data are used to simulate and project the magnitude of SIF that can be expected from near-ground observations within selected solar Fraunhofer line regions. Comparisons among vegetative species and nitrogen (N) supply treatments were made with three F approaches: the passive FLD principle applied to telluric oxygen (O2) bands from field-acquired canopy reflectance spectra, simulated SIF from actively induced laboratory emission spectra of leaves at a series of solar Fraunhofer lines ranging from 422 to 758 nm, and examination of two dual-F excitation algorithms developed from laboratory data. From these analyses we infer that SIF from whole-plant canopies can be simulated by use of laboratory data from active systems on individual leaves and that SIF has application for the large-scale assessment of vegetation.


Assuntos
Agricultura/métodos , Algoritmos , Clorofila/análise , Monitoramento Ambiental/métodos , Oxigênio/análise , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Espectrometria de Fluorescência/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Photochem Photobiol ; 81(5): 1075-85, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16022558

RESUMO

A growth-chamber experiment was conducted to evaluate whether ethylenenediurea (EDU), a chemical shown to be protective against ozone pollution, could ameliorate foliar damage induced by ultraviolet-B (UV-B) radiation exposure in 'Roanoke' soybean (Glycine max L.), a UV-B-sensitive cultivar, and whether these effects could be discriminated using fluorescence (F) observations. The experiment had four treatment groups: control; biologically effective UV-B (18 kJ m(-2) day(-1)); EDU (500 micromol mol(-1)); and both UV-B and EDU (UV/EDU). Measurements included photosynthetic pigments, F image system (FIS) images of adaxial surfaces in four spectral regions (blue, green, red and far-red) and F emission spectra of the pigment extracts produced at two excitation wavelengths, 280 nm (280EX) and 380 nm (380EX). Several F ratios from 280EX, 380EX and the FIS images successfully separated the low UV vs high EDU group responses based on means alone, with intermediate values for controls and the combined UV/EDU groups. A UV-B/blue emission ratio, F315/F420 (280EX), was correlated with chlorophyll content (microg cm(-2))(R = 0.88, P < 0.001), as was a ratio of emissions at two UV-A wavelengths: F330/F385 (280EX) (R = 0.87). These two 280EX ratios were also linearly correlated with emission ratios produced by 380EX, such as the far-red/green ratio, F730/F525 (380EX) (R = 0.92, P < 0.001), and clearly distinguished the UV-B and EDU groups separately, and which bracketed the similar intermediate responses of the UV/EDU and control groups. The FIS images additionally captured the following anatomical spatial patterns across the leaf surfaces: (1) emissions of UV-B-irradiated leaves were more uniform but lower in intensity than those of other groups; and (2) emissions of EDU-treated leaves exhibited the greatest variation in spatial patterns because veins had elevated blue F and leaf edges had enhanced red and far-red F. This experiment supports the hypothesis that EDU substantially ameliorated UV-B damage to foliage, a result that relied on the combined use of FIS images and emission spectra.


Assuntos
Glycine max/efeitos da radiação , Compostos de Fenilureia/farmacologia , Folhas de Planta/efeitos da radiação , Raios Ultravioleta , Folhas de Planta/fisiologia , Espectrometria de Fluorescência
9.
Environ Sci Pollut Res Int ; 10(3): 167-72; discussion 172, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12846377

RESUMO

BACKGROUND: Exposure to harmful levels of ultraviolet-B radiation (UVB), a component of solar radiation, has been suggested as a potential cause of amphibian declines. METHODS: We measured solar radiation (UVB, ultraviolet-A, and visible) wavebands in breeding ponds of Bufo boreas (boreal toad, a montane species that has undergone severe population declines) and Bufo woodhousii (Woodhouse's toad, a plains toad that has not experienced declines)and examined tolerances of these species to simulated solar UVB exposures in the laboratory. RESULTS: We found larvae of both species to be tolerant of simulated solar UVB in excess of solar UVB levels observed in their breeding ponds. B. boreas tadpoles were more tolerant of simulated solar UVB exposure than B. woodhousii tadpoles, possibly because of greater amounts of photoprotective melanin in B. boreas skin. CONCLUSIONS: UVB levels observed in B. boreas habitats do not currently appear to constitute a threat to the survival of these animals; however, long-term (> 1 month) exposure to UVB levels comparable to levels associated with the water interface appears to reduce survival in B. woodhousii tadpoles. Therefore, future increases in surface and water column UVB radiation in bufonid habitats might pose significant survival risks to B. boreas or B. woodhousii populations.


Assuntos
Bufonidae/crescimento & desenvolvimento , Raios Ultravioleta/efeitos adversos , Animais , Bufonidae/embriologia , Meio Ambiente , Larva/crescimento & desenvolvimento , Larva/efeitos da radiação , Tolerância a Radiação , Luz Solar/efeitos adversos
10.
Tree Physiol ; 17(8_9): 553-561, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-14759828

RESUMO

We measured seasonal and canopy-level gas exchange in two stands of jack pine (Pinus banksiana Lamb.) and one stand of black spruce (Picea mariana (Mill.) B.S.P.) on relatively clear days from late May until mid-September 1994. Field measurements were made with a portable infrared gas analyzer, and laboratory measurements included photosynthetic oxygen evolution and needle chemical composition. Seasonally averaged light-saturated assimilation rates in the field were 4.0 micro mol m(-2) s(-1) in jack pine and 2.7 micro mol m(-2) s(-1) in black spruce. Rates of assimilation and transpiration were highest in midsummer. The seasonal pattern was especially pronounced for black spruce, probably because cold soil temperatures limited early season gas exchange rates in this species. Among stands, instantaneous water-use efficiency was highest in a young jack pine stand early in the season and higher in the upper canopy foliage than in the lower canopy foliage at all sites at the end of the season. Needles of young jack pine exhibited higher photosynthetic capacity, dark respiration and needle N concentrations than needles of trees at the old site. In both species, slight acclimation to shading was manifested by reductions in photosynthetic capacity in the lower canopy foliage. In both species, first-year needles had greater photosynthetic capacity than older needles but in situ rates of CO(2) assimilation in the field showed little difference among needle age classes. In both species, there was a strong correlation between assimilation and stomatal conductance, indicating that assimilation was highly stomatal limited and that environmental factors that alter conductance (e.g., VPD) have a strong influence on CO(2) and water fluxes, especially after early season thawing concludes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA