Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 346: 140533, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303396

RESUMO

This paper proposes the preparation of a new sorbent material based on melamine sponges (MS) with superhydrophobic, superoleophilic, and magnetic properties. This study involved impregnating the surface of commercially available MS with eco-friendly deep eutectic solvents (DES) and Fe3O4 nanoparticles. The DES selection was based on the screening of 105 eutectic mixtures using COSMO-RS modeling. Other parameters affecting the efficiency and selectivity of oil removal from water were optimized using the Box-Bhenken model. Menthol:Thymol (1:1)@Fe3O4-MS exhibited the highest sorption capacity for real crude oils (101.7-127.3 g/g). This new sponge demonstrated paramagnetic behavior (31.06 emu/g), superhydrophobicity (151°), superoleophobicity (0°), low density (15.6 mg/cm3), high porosity (99 %), and excellent mechanical stability. Furthermore, it allows multiple regeneration processes without losing its sorption capacity. Based on these benefits, Menthol:Thymol (1:1)@Fe3O4-MS shows promise as an efficient, cost-effective, and eco-friendly substitute for the existing sorbents.


Assuntos
Petróleo , Triazinas , Água/química , Mentol , Timol , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Magnéticos
2.
J Biomed Mater Res B Appl Biomater ; 112(1): e35332, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728122

RESUMO

The development of novel implants subjected to surface modification to achieve high osteointegration properties at simultaneous antimicrobial activity is a highly current problem. This study involved different surface treatments of titanium surface, mainly by electrochemical oxidation to produce a nanotubular oxide layer (TNTs), a subsequent electrochemical reduction of silver nitrate and decoration of a nanotubular surface with silver nanoparticles (AgNPs), and finally electrophoretic deposition (EPD) of a composite of chitosan (CS) and either polymethacrylate-based copolymer Eudragit E 100 (EE100) or poly(4-vinylpyridine) (P4VP) coating. The effects of each stage of this multi-step modification were examined in terms of morphology, roughness, wettability, corrosion resistance, coating-substrate adhesion, antibacterial properties, and osteoblast cell adhesion and proliferation. The results showed that the titanium surface formed nanotubes (inner diameter of 97 ± 12 nm, length of 342 ± 36 nm) subsequently covered with silver nanoparticles (with a diameter of 88 ± 8 nm). Further, the silver-decorated nanotubes were tightly coated with biopolymer films. Most of the applied modifications increased both the roughness and the surface contact angle of the samples. The deposition of biopolymer coatings resulted in reduced burst release of silver. The coated samples revealed potent antimicrobial activity against both Gram-positive and Gram-negative bacteria. Total elimination (99.9%) of E. coli was recorded for a sample with CS/P4VP coating. Cytotoxicity results using hFOB 1.19, a human osteoblast cell line, showed that after 3 days the tested modifications did not affect the cellular growth according to the titanium control. The proposed innovative multilayer antibacterial coatings can be successful for titanium implants as effective postoperative anti-inflammation protection.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanotubos , Ácidos Polimetacrílicos , Polivinil , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/farmacologia , Quitosana/química , Titânio/farmacologia , Titânio/química , Corrosão , Escherichia coli , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Prata/farmacologia , Nanotubos/química , Propriedades de Superfície
3.
J Biomed Mater Res B Appl Biomater ; 111(10): 1800-1812, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37255007

RESUMO

Metallic materials for long-term load-bearing implants still do not provide high antimicrobial activity while maintaining strong compatibility with bone cells. This study aimed to modify the surface of Ti13Nb13Zr alloy by electrophoretic deposition of a chitosan coating with a covalently attached Arg-Gly-Asp (RGD) peptide. The suspensions for coating deposition were prepared in two different ways either using hydroxyacetic acid or a carbon dioxide saturation process. The coatings were deposited using a voltage of 10 V for 1 min. The prepared coatings were examined using SEM, EDS, FTIR, and XPS techniques. In addition, the wettability of these surfaces, corrosion resistance, adhesion of the coatings to the metallic substrate, and their antimicrobial activity (E. coli, S. aureus) and cytocompatibility properties using the MTT and LDH assays were studied. The coatings produced tightly covered the metallic substrate. Spectroscopic studies confirmed that the peptide did not detach from the chitosan chain during electrophoretic deposition. All tested samples showed high corrosion resistance (corrosion current density measured in nA/cm2 ). The deposited coatings contributed to a significant increase in the antimicrobial activity of the samples against Gram-positive and Gram-negative bacteria (reduction in bacterial counts from 99% to, for CS-RGD-Acid and the S. aureus strain, total killing capacity). MTT and LDH results showed high compatibility with bone cells of the modified surfaces compared to the bare substrate (survival rates above 75% under indirect contact conditions and above 100% under direct contact conditions). However, the adhesion of the coatings was considered weak.


Assuntos
Quitosana , Quitosana/farmacologia , Quitosana/química , Staphylococcus aureus , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Ligas/farmacologia , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Oligopeptídeos/farmacologia , Suspensões , Osteoblastos , Titânio/química
4.
Dalton Trans ; 52(17): 5771-5779, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37038971

RESUMO

This study concerns energetics of formation and the stability in high water partial pressure of BaLnCo2O6-δ, (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGd1-xLaxCo2O6-δ, where x = 0.2, 0.5, and 0.7 (BGLC) double perovskite cobaltites. Those materials are extensively studied due to their potential applications as a positrode in electrochemical devices. Therefore, their stability under such conditions is a key issue. All investigated materials are thermodynamically stable relative to binary oxides and exhibit strongly exothermic enthalpies of formation. Moreover, BaGd0.3La0.7Co2O6-δ and BaGd0.8La0.2Co2O6-δ remain the main perovskite structure up to 3 bars of water vapor at 400 °C. At higher steam pressure, reaching 10 bar at 300 °C, the partial decomposition to constituent oxides and hydroxides was observed. The BGLC compounds exhibit higher negative formation enthalpies in comparison to single-Ln compositions, which does not translate into higher chemical stability under high steam pressures since the BLnC series retained the main perovskite structure at higher temperatures as well as in higher water vapor pressures.

5.
Phys Chem Chem Phys ; 25(13): 9208-9215, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919378

RESUMO

A group of multi-component oxides based on BaZrO3 have been prepared using a solid-state reaction method and examined in terms of their water uptake and thermodynamics of formation. Depending on the type and amount of acceptor substitution, the synthesized compounds exhibit various proton defect concentrations, reaching up to 0.2 mol/mol for a compound containing 10 different elements in the B-sublattice, where 50% of them are acceptors. For the most promising materials, van't Hoff plots were created and the enthalpies and entropies of hydration were calculated. At higher temperatures, these parameters do not differ from the values for the reference yttrium doped barium zirconate. However, at lower temperatures they are more negative, indicating a more exothermic process of proton incorporation.

6.
Materials (Basel) ; 16(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837332

RESUMO

In recent years, polyurethane nanocomposites have attracted more attention due to the massive demand for materials with increasingly exceptional mechanical, optical, electrical, and thermal properties. As nanofillers have a high surface area, the interaction between the nanofiller and the polymer matrix is an essential issue for these materials. The main aim of this study is to validate the impact of the montmorillonite nanofiller (MMT) surface structure on the properties of polyurethane thin-film nanocomposites. Despite the interest in polyurethane-montmorillonite clay nanocomposites, only a few studies have explored the impact of montmorillonite surface modification on polyurethane's material properties. For this reason, four types of polyurethane nanocomposites with up to 3% content of MMT were manufactured using the prepolymer method. The impact of montmorillonites on nanocomposites properties was tested by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), contact angle measurement, X-ray diffraction (XRD), and optical coherence tomography (OCT). The results showed that chemical and physical interactions between the polymer matrix and functional groups on the montmorillonite surface have a considerable impact on the final properties of the materials. It was noticed that the addition of MMT changed the thermal decomposition process, increased T2% by at least 14 °C, changed the hydrophilicity of the materials, and increased the glass transition temperature. These findings have underlined the importance of montmorillonite surface structure and interactions between nanocomposite phases for the final properties of nanocomposites.

7.
Chemphyschem ; 24(1): e202200368, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36253100

RESUMO

LaNb0.8 M0.2 O4-δ (where M=As, Sb, V, and Ta) oxides with pentavalent elements of different ionic sizes were synthesized by a solid-state reaction method. The vibrational properties of these oxides have been investigated. These studies revealed that the substituent element influences both Debye temperature value as well as the Raman active vibrational modes. Additionally, the low-temperature vibrational properties of LaNb0.8 Sb0.2 O4-δ have been determined to show the phase transition occurrence at 260 K which is lower than previously reported.


Assuntos
Óxidos , Análise Espectral Raman , Análise Espectral Raman/métodos , Temperatura , Transição de Fase , Óxidos/química , Temperatura Baixa
8.
Dalton Trans ; 51(48): 18667-18677, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36448547

RESUMO

Ba1-xGd1-yLax+yCo2O6-δ (BGLC) compositions with large compositional ranges of Ba, Gd, and La have been characterised with respect to phase compositions, structure, and thermal and chemical expansion. The results show a system with large compositional flexibility, enabling tuning of functional properties and thermal and chemical expansion. We show anisotropic chemical expansion and detailed refinements of emerging phases as La is substituted for Ba and Gd. The dominating phase is the double perovskite structure Pmmm, which is A-site ordered along the c-axes and with O vacancy ordering along the b-axis in the Ln-layer. Phases emerging when substituting La for Ba are orthorhombic Ba-deficient Pbnm and cubic LaCoO3-based R3̄c. When La is almost completely substituted for Gd, the material can be stabilised in Pmmm, or cubic Pm3̄m, depending on thermal and atmospheric history. We list thermal expansion coefficients for x = 0-0.3, y = 0.2.

9.
Colloids Surf B Biointerfaces ; 218: 112749, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932556

RESUMO

This paper reports the effects of rhamnolipids presence in the alginate hydrogel and CO32- solution, on the precipitation of CaCO3 in the Ca2+ loaded alginate hydrogel. Characteristics of the formed particles are discussed. Model conditions containing alginate hydrogel and rhamnolipids were used in order to mimic the natural environment of biomineralization in biofilms. It has been shown that rhamnolipids affect the characteristics of precipitated calcium carbonate effect of using these biosurfactants depends on their concentration as well as whether they are directly present in the hydrogel matrix or the carbonate solution surrounding the hydrogel. The greatest effect compared to the control samples was found for the rhamnolipids in the form of micelles directly present in the hydrogel with the CaCl2 cross-linked solution at concentration of 0.05 M. These conditions result in the highest increase in vaterite content, specific surface area, and pore volume. The mechanism of CaCO3 precipitation in alginate hydrogel containing rhamnolipids has been proposed.


Assuntos
Alginatos , Hidrogéis , Biomineralização , Carbonato de Cálcio , Cloreto de Cálcio , Glicolipídeos , Micelas
10.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012345

RESUMO

The main aim of the research was to develop a new biocompatible and injectable composite with the potential for application as a bone-to-implant bonding material or as a bone substitute. A composite based on hydroxyapatite, gelatin, and two various types of commercially available transglutaminase (TgBDF/TgSNF), as a cross-linking agent, was proposed. To evaluate the impacts of composite content and processing parameters on various properties of the material, the following research was performed: the morphology was examined by SEM microscopy, the chemical structure by FTIR spectroscopy, the degradation behavior was examined in simulated body fluid, the injectability test was performed using an automatic syringe pump, the mechanical properties using a nanoindentation technique, the surface wettability was examined by an optical tensiometer, and the cell viability was assayed by MTT and LDH. In all cases, a composite paste was successfully obtained. Injectability varied between 8 and 15 min. The type of transglutaminase did not significantly affect the surface topography or chemical composition. All samples demonstrated proper nanomechanical properties with Young's modulus and the hardness close to the values of natural bone. BDF demonstrated better hydrophilic properties and structural stability over 7 days in comparison with SNF. In all cases, the transglutaminase did not lead to cell necrosis, but cellular proliferation was significantly inhibited, especially for the BDF agent.


Assuntos
Durapatita , Gelatina , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cerâmica/farmacologia , Durapatita/química , Gelatina/química , Engenharia Tecidual/métodos , Transglutaminases
11.
Inorg Chem ; 61(25): 9433-9444, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35686953

RESUMO

Photocatalysis is regarded as a promising tool for wastewater remediation. In recent years, many studies have focused on investigating novel photocatalysts driven by visible light. In this study, K2V6O16·nH2O nanobelts and KV3O8 microplatelets were synthesized and investigated as photocatalysts. Samples were obtained via the facile method based on liquid-phase exfoliation with ion exchange. By changing the synthesis temperature (20-80 °C), different compositions, morphologies, and V4+/V5+ ratios were obtained and investigated as photocatalysts for organic dye degradation. Potassium vanadates' structural, morphological, and optical properties were characterized using X-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Physical Property Measurement System (PPMS), thermogravimetric analysis (TGA) with mass spectrometry (MS), N2 adsorption, scanning electron microscopy (SEM), photoluminescence (PL), and UV-vis diffuse reflectance spectroscopy (DRS). Synthesized K2V6O16·nH2O and KV3O8 showed an efficient absorption in the visible wavelength region with a narrow band gap energy of 1.80 and 1.91 eV, respectively. Their photocatalytic activity was evaluated by the degradation of methylene blue (MB) under simulated solar light illumination. The KV3O8 microplatelets exhibited the greatest photocatalytic activity, resulting in more than 90% degradation of the dye within the first 30 min. It is suggested that the observed excellent photocatalytic performance is attributed to the high content of V4+ species. Furthermore, the influence of active species was investigated, and the mechanism responsible for the photodegradation of the MB dye was discussed for the first time for potassium vanadates.

12.
Materials (Basel) ; 15(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35329720

RESUMO

In this paper, the structural properties and the electrical conductivity of La1-xPrxNbO4+δ (x = 0.00, 0.05, 0.1, 0.15, 0.2, 0.3) and PrNbO4+δ are presented and discussed. All synthesized samples crystallized in a monoclinic structure with similar thermal expansion coefficients. The phase transition temperature between the monoclinic and tetragonal structure increases with increasing praseodymium content from 500 °C for undoped LaNbO4+δ to 700 °C for PrNbO4+δ. Thermogravimetry, along with X-ray photoelectron spectroscopy, confirmed a mixed 3+/4+ oxidation state of praseodymium. All studied materials, in humid air, exhibited mixed protonic, oxygen ionic and hole conductivity. The highest total conductivity was measured in dry air at 700 °C for PrNbO4+δ, and its value was 1.4 × 10-3 S/cm.

13.
Materials (Basel) ; 14(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443180

RESUMO

Ba0.5La0.5Co0.5Fe0.5O3-δ was synthesized in the solid-state reaction route. The influence of ball milling parameters (such as milling media size, angular velocity, and time), pelletizing pressure, and annealing parameters on the microstructure was studied. The grain size distribution and density or specific surface area changes were investigated in each approach while the individual parameters were changed. The evaluation of BLCF synthesis parameters enables tailoring the microstructure to various applications. It was observed that with lowering the size of milling balls and increasing the angular velocity the material will be porous and thus more appropriate as electrode material in proton ceramic fuel cell or electrolyzer. An increase of time, balls diameter, and/or angular velocity of milling enables one to densify the material in case of membrane application in, e.g., as a gas sensor. The significant influence on densification has also annealing temperature increase. Applying 1200 °C during annealing leads to dense material, while at 1100 °C shows visible porosity of the product. In this work, we present the results of the BLCF synthesis parameters change allowing the selection of appropriate parameter values depending on the further application as PCCs.

14.
Materials (Basel) ; 14(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443013

RESUMO

Glass-ceramics with the composition B2O3-Bi2O3-SrF2 were synthesized by the conventional melt-quenching technique and subsequent crystallization of the parental glasses. The temperature at which the ceramization was carried out was selected based on differential scanning calorimetry (DSC) analysis. The structure of the studied materials and the formation of SrF2 nanocrystals were confirmed by the Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. It was found that the amount of strontium fluoride introduced into the parental borate-bismuth glass has a significant impact on the growth of SrF2 nanocrystals. In particular, the influence of the crystalline SrF2 phase on luminescence intensity and kinetics was studied using Eu2O3-doped samples. An increase in luminescence intensity was observed in the samples in which SrF2 nanocrystals were formed. This is most likely related to the fact that some of the Eu3+ ions were (after annealing of the glass) located in the crystalline structure of strontium fluoride. This was confirmed both by the luminescence lifetime obtained based on the luminescence decay curves and the calculated Judd-Ofelt parameters, Ω2 and Ω4. The results achieved confirm that the glasses and glass-ceramics described in this work could be considered as a new phosphor for light-emitting diodes (LEDs).

15.
Materials (Basel) ; 14(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443056

RESUMO

Due to the possibility of bacterial infections occurring around peri-implant tissues, it is necessary to provide implant coatings that release antibacterial substances. The scientific goal of this paper was to produce by electrophoretic deposition (EPD) a smart, chitosan/Eudragit E 100/silver nanoparticles (chit/EE100/AgNPs) composite coating on the surface of titanium grade 2 using different deposition parameters, such as the content of AgNPs, applied voltage, and time of deposition. The morphology, surface roughness, thickness, chemical and phase composition, wettability, mechanical properties, electrochemical properties, and silver release rate at different pH were investigated. Using lower values of deposition parameters, coatings with more homogeneous morphology were obtained. The prepared coatings were sensitive to the reduced pH environment.

16.
Materials (Basel) ; 14(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810612

RESUMO

In this work, nanohydroxyapatite coatings with nanosilver and nanocopper have been fabricated and studied. The presented results concern coatings with a chemical composition that has never been proposed before. The present research aims to characterize the effects of nanosilver and nanocopper, dispersed in nanohydroxyapatite coatings and deposited on a new, non-toxic Ti13Zr13Nb alloy, on the physical and mechanical properties of coatings. The coatings were obtained by a one-stage electrophoretic process. The surface topography, and the chemical and phase compositions of coatings were examined with scanning electron microscopy, atomic force microscopy, X-ray diffractometry, glow discharge optical emission spectroscopy, and energy-dispersive X-ray spectroscopy. The mechanical properties of coatings were determined by nanoindentation tests, while coatings adhesion was determined by nanoscratch tests. The results demonstrate that copper addition increases the hardness and adhesion. The presence of nanosilver has no significant influence on the adhesion of coatings.

17.
Chemistry ; 27(17): 5393-5398, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33491808

RESUMO

Lanthanum orthoantimonate was synthesized using a solid-state synthesis method. To enhance the possible protonic conductivity, samples with the addition of 1 mol % Ca in La-site were also prepared. The structure was studied by the means of X-ray diffraction, which showed that both specimens were single phase. The materials crystallized in the space group P21 /n. Dilatometry revealed that the material expanded non-linearly with the temperature. The nature of this deviation is unknown; however, the calculated linear fraction thermal expansion coefficient was 9.56×10-6 K-1 . Electrical properties studies showed that the material is a proton conductor in oxidizing conditions, which was confirmed both by temperature studies in wet in dry air, but also by the H/D isotope exchange experiment. The conductivity was rather modest, peaking at the order of 10-6  S cm-1 at 800 °C, but this could be further improved by microstructure and doping optimization. This is the first time protonic conductivity in lanthanum orthoantimonates is reported.

18.
ACS Omega ; 5(47): 30395-30404, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283087

RESUMO

We have studied alkaline-earth-metal-doped Y3GaO6 as a new family of oxide-ion conductor. Solid solutions of Y3GaO6 and 2% -Ca2+-, -Sr2+-, and -Ba2+-doped Y3GaO6, i.e., Y(3-0.06)M0.06GaO6-δ (M = Ca2+, Sr2+, and Ba2+), were prepared via a conventional solid-state reaction route. X-ray Rietveld refined diffractograms of all the compositions showed the formation of an orthorhombic structure having the Cmc21 space group. Scanning electron microscopy (SEM) images revealed that the substitution of alkaline-earth metal ions promotes grain growth. Aliovalent doping of Ca2+, Sr2+, and Ba2+ enhanced the conductivity by increasing the oxygen vacancy concentration. However, among all of the studied dopants, 2% Ca2+-doped Y3GaO6 was found to be more effective in increasing the ionic conductivity as ionic radii mismatch is minimum for Y3+/Ca2+. The total conductivity of 2% Ca-doped Y3GaO6 composition calculated using the complex impedance plot was found to be ∼0.14 × 10-3 S cm-1 at 700 °C, which is comparable to many other reported solid electrolytes at the same temperature, making it a potential candidate for future electrolyte material for solid oxide fuel cells (SOFCs). Total electrical conductivity measurement as a function of oxygen partial pressure suggests dominating oxide-ion conduction in a wide range of oxygen partial pressure (ca. 10-20-10-4 atm). The oxygen-ion transport is attributed to the presence of oxygen vacancies that arise from doping and conducting oxide-ion layers of one, two-, or three-dimensional channels within the crystal structure. The oxide-ion migration pathways were analyzed by the bond valence site energy (BVSE)-based approach. Photoluminescence analysis, dilatometry, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy studies were also performed to verify the experimental findings.

19.
Materials (Basel) ; 13(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933063

RESUMO

The application of double perovskite cobaltites BaLnCo2O6-δ (Ln = lanthanide element) in electrochemical devices for energy conversion requires control of their properties at operating conditions. This work presents a study of a series of BaLnCo2O6-δ (Ln = La, Pr, Nd) with a focus on the evolution of structural and electrical properties with temperature. Symmetry, oxygen non-stoichiometry, and cobalt valence state have been examined by means of Synchrotron Radiation Powder X-ray Diffraction (SR-PXD), thermogravimetry (TG), and X-ray Absorption Spectroscopy (XAS). The results indicate that all three compositions maintain mainly orthorhombic structure from RT to 1000 °C. Chemical expansion from Co reduction and formation of oxygen vacancies is observed and characterized above 350 °C. Following XAS experiments, the high spin of Co was ascertained in the whole range of temperatures for BLC, BPC, and BNC.

20.
Dalton Trans ; 49(31): 10839-10850, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32705110

RESUMO

The defect fluorite yttrium niobate Y3NbO7 and pyrochlore yttrium titanate Y2Ti2O7 solid solutions have been synthesized via a solid state synthesis route. The resulting stoichiometry of the oxides is Y2+xTi2-2xNbxO7, where x = 0 to x = 1. All of the samples were single-phase; however, for those with a predominant fluorite phase, a small amount of additional pyrochlore phase was detected. The volume of the solid solution unit cells linearly increases with increase in yttrium niobate content. The water uptake increases with (x) and the protonic defect concentration reaches almost 4.5 × 10-3 mol mol-1 at 300 °C. The calculated enthalpy of formation from oxides suggests strong stability for all of the compositions, with the values of enthalpy ranging from -84.6 to -114.3 kJ mol-1. The total conductivity does not have a visible dependence on Y3NbO7 content. For each compound, the total conductivity is higher in wet air. Interestingly, for samples where x < 0.5, the ratio of conductivity in hydrogen to air increases with increasing temperature, while for x > 0.5, the trend is the opposite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA