Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Nutr Biochem ; 123: 109492, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866427

RESUMO

Every year, thousands of children, particularly those under 5 years old, die because of cerebral malaria (CM). Following conventional treatment, approximately 25% of surviving individuals have lifelong severe neurocognitive sequelae. Therefore, improved conventional therapies or effective alternative therapies that prevent the severe infection are crucial. Omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) are known to have antioxidative and anti-inflammatory effects and protect against diverse neurological disorders, including Alzheimer's and Parkinson's diseases. However, little is known regarding the effects of Ω-3 PUFAs against parasitic infections. In this study, C57BL/6 mice received supplemental treatment of a fish oil rich in the Ω-3 PUFA, docosahexaenoic acid (DHA), which was started 15 days prior to infection with Plasmodium berghei ANKA and was maintained until the end of the study. Animals treated with the highest doses of DHA, 3.0 and 6.0 g/kg body weight, had 60 and 80% chance of survival, respectively, while all nontreated mice died by the 7th day postinfection due to CM. Furthermore, the parasite load during the critical period for CM development (5th to 11th day postinfection) was controlled in treated mice. However, after this period all animals developed high levels of parasitemia until the 20th day of infection. DHA treatment also effectively reduced blood-brain barrier (BBB) damage and brain edema and completely prevented brain hemorrhage and vascular occlusion. A strong anti-inflammatory profile was observed in the brains of DHA-treated mice, as well as, an increased number of neutrophil and reduced number of CD8+ T leukocytes in the spleen. Thus, this is the first study to demonstrate that the prophylactic use of DHA-rich fish oil exerts protective effects against experimental CM, reducing the mechanical and immunological events caused by the P. berghei ANKA infection.


Assuntos
Ácidos Graxos Ômega-3 , Malária Cerebral , Criança , Humanos , Camundongos , Animais , Pré-Escolar , Óleos de Peixe/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Malária Cerebral/prevenção & controle , Malária Cerebral/tratamento farmacológico , Camundongos Endogâmicos C57BL , Ácidos Graxos Ômega-3/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
J Biol Chem ; 291(41): 21375-21387, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27555322

RESUMO

Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.


Assuntos
Metabolismo Energético , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Hanseníase Tuberculoide/metabolismo , Mycobacterium leprae/metabolismo , Células de Schwann/metabolismo , Linhagem Celular , Humanos , Metionina/análogos & derivados , Metionina/farmacologia , Mitocôndrias/metabolismo , Células de Schwann/microbiologia
4.
s.l; s.n; 2016. 13 p. ilus, tab, graf.
Não convencional em Inglês | SES-SP, HANSEN, Hanseníase, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1095631

RESUMO

Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.


Assuntos
Humanos , Células de Schwann/metabolismo , Células de Schwann/microbiologia , Hanseníase Tuberculoide/metabolismo , Linhagem Celular , Ácido Láctico/metabolismo , Metabolismo Energético , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Metionina/análogos & derivados , Metionina/farmacologia , Mitocôndrias/metabolismo , Mycobacterium leprae/metabolismo
5.
Exp Neurol ; 217(1): 7-15, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19416680

RESUMO

The success of peripheral nerve regeneration depends on intrinsic properties of neurons and a favorable environment, although the mechanisms underlying the molecular events during degeneration and regeneration are still not elucidated. Schwann cells are considered one of the best candidates to be closely involved in the success of peripheral nerve regeneration. These cells and invading macrophages are responsible for clearing myelin and axon debris, creating an appropriate route for a successful regeneration. After injury, Schwann cells express galectin-3, and this has been correlated with phagocytosis; also, in the presence of galectin-3, there is inhibition of Schwann-cell proliferation in vitro. In the present study we explored, in vivo, the effects of the absence of galectin-3 on Wallerian degeneration and nerve-fiber regeneration. We crushed the sciatic nerves of galectin-3 knockout and wild-type mice, and followed the pattern of degeneration and regeneration from 24 h up to 3 weeks. We analyzed the number of myelinated fibers, axon area, fiber area, myelin area, G-ratio and immunofluorescence for beta-catenin, macrophages and Schwann cells in DAPI counterstained sections. Galectin-3 knockout mice showed earlier functional recovery and faster regeneration than the wild-type animals. We concluded that the absence of galectin-3 allowed faster regeneration, which may be associated with increased growth of Schwann cells and expression of beta-catenin. This would favor neuron survival, followed by faster myelination, culminating in a better morphological and functional outcome.


Assuntos
Galectina 3/deficiência , Regeneração Nervosa/genética , Recuperação de Função Fisiológica/genética , Neuropatia Ciática/fisiopatologia , Animais , Antígenos de Diferenciação/metabolismo , Axônios/patologia , Axônios/fisiologia , Modelos Animais de Doenças , Indóis , Locomoção/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Nervosas Mielinizadas/fisiologia , Proteínas S100/metabolismo , Células de Schwann/patologia , Células de Schwann/fisiologia , Neuropatia Ciática/patologia , Fatores de Tempo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA