Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Chem ; 91: 107437, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33517146

RESUMO

RIT1 is a member of the Ras superfamily of small GTPases involved in regulation of cellular signaling. Mutations to RIT1 are involved in cancer and developmental disorders. Like many Ras subfamily members, RIT1 is localized to the plasma membrane. However, RIT1 lacks the C-terminal prenylation that helps many other subfamily members adhere to cellular membranes. We used molecular dynamics simulations to examine the mechanisms by which the C-terminal peptide (CTP) of RIT1 associates with lipid bilayers. We show that the CTP is unstructured and that its membrane interactions depend on lipid composition. While a 12-residue region of the CTP binds strongly to anionic bilayers containing phosphatidylserine lipids, the CTP termini fray from the membrane allowing for accommodation of the RIT1 globular domain at the membrane-water interface.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Bicamadas Lipídicas/química , Proteínas ras/química , Sequência de Aminoácidos , Membrana Celular/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Mutação , Prenilação de Proteína , Proteínas ras/genética , Proteínas ras/metabolismo
2.
J Mol Biol ; 426(24): 4002-4017, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25311860

RESUMO

Many viruses utilize molecular motors to package their genomes into preformed capsids. A striking feature of these motors is their ability to generate large forces to drive DNA translocation against entropic, electrostatic, and bending forces resisting DNA confinement. A model based on recently resolved structures of the bacteriophage T4 motor protein gp17 suggests that this motor generates large forces by undergoing a conformational change from an extended to a compact state. This transition is proposed to be driven by electrostatic interactions between complementarily charged residues across the interface between the N- and C-terminal domains of gp17. Here we use atomistic molecular dynamics simulations to investigate in detail the molecular interactions and residues involved in such a compaction transition of gp17. We find that although electrostatic interactions between charged residues contribute significantly to the overall free energy change of compaction, interactions mediated by the uncharged residues are equally if not more important. We identify five charged residues and six uncharged residues at the interface that play a dominant role in the compaction transition and also reveal salt bridging, van der Waals, and solvent hydrogen-bonding interactions mediated by these residues in stabilizing the compact form of gp17. The formation of a salt bridge between Glu309 and Arg494 is found to be particularly crucial, consistent with experiments showing complete abrogation in packaging upon Glu309Lys mutation. The computed contributions of several other residues are also found to correlate well with single-molecule measurements of impairments in DNA translocation activity caused by site-directed mutations.


Assuntos
Bacteriófago T4/fisiologia , Empacotamento do DNA , DNA Viral/química , Montagem de Vírus , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Sítios de Ligação/genética , DNA Viral/genética , DNA Viral/metabolismo , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Eletricidade Estática , Termodinâmica , Proteínas Virais/química , Proteínas Virais/metabolismo
3.
Nat Commun ; 5: 4173, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24937091

RESUMO

How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.


Assuntos
Bacteriófago T4/fisiologia , Empacotamento do DNA/fisiologia , Modelos Biológicos , Modelos Moleculares , Proteínas Motores Moleculares/fisiologia , Eletricidade Estática , Proteínas Virais/fisiologia , Trifosfato de Adenosina/metabolismo , Fenômenos Biomecânicos , Hidrólise , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA