Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676204

RESUMO

The aim of this paper is to discuss the usability of vibrations as energy sources, for the implementation of energy self-sufficient wireless sensing platforms within the Industrial Internet of Things (IIoT) framework. In this context, this paper proposes to equip vibrating assets like machinery with piezoelectric sensors, used to set up energy self-sufficient sensing platforms for hard-to-reach positions. Preliminary measurements as well as extended laboratory tests are proposed to understand the behavior of commercial piezoelectric sensors when employed as energy harvesters. First, a general architecture for a vibration-powered LoRaWAN-based sensor node is proposed. Final tests are then performed to identify an ideal trade-off between sensor sampling rates and energy availability. The target is to ensure continuous operation of the device while guaranteeing a charging trend of the storage component connected to the system. In this context, an Ultra-Low-Power Energy-Harvesting Integrated Circuit plays a crucial role by ensuring the correct regulation of the output with very high efficiency.

2.
Physiol Meas ; 41(5): 054003, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325435

RESUMO

OBJECTIVES: This study presents SmartProbe, an electrical bioimpedance (EBI) sensing system based on a concentric needle electrode (CNE). The system allows the use of commercial CNEs for accurate EBI measurement, and was specially developed for in-vivo real-time cancer detection. APPROACH: Considering the uncertainties in EBI measurements due to the CNE manufacturing tolerances, we propose a calibration method based on statistical learning. This is done by extracting the correlation between the measured impedance value |Z|, and the material conductivity σ, for a group of reference materials. By utilizing this correlation, the relationship of σ and |Z| can be described as a function and reconstructed using a single measurement on a reference material of known conductivity. MAIN RESULTS: This method simplifies the calibration process, and is verified experimentally. Its effectiveness is demonstrate by results that show less than 6% relative error. An additional experiment is conducted for evaluating the system's capability to detect cancerous tissue. Four types of ex-vivo human tissue from the head and neck region, including mucosa, muscle, cartilage and salivary gland, are characterized using SmartProbe. The measurements include both cancer and surrounding healthy tissue excised from 10 different patients operated on for head and neck cancer. The measured data is then processed using dimension reduction and analyzed for tissue classification. The final results show significant differences between pathologic and healthy tissues in muscle, mucosa and cartilage specimens. SIGNIFICANCE: These results are highly promising and indicate a great potential for SmartProbe to be used in various cancer detection tasks.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/patologia , Calibragem , Impedância Elétrica , Eletrodos , Humanos , Agulhas , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA