Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Invest Dermatol ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570030

RESUMO

BACE1 is well-known for its role in the development of Alzheimer's disease. Recent publications, including our own, have demonstrated a role for this enzyme in other chronic diseases. The aim of this study was to investigate the role of BACE1 in the autoimmune disease systemic sclerosis (SSc). BACE1 protein levels were elevated in the skin of patients with SSc. Inhibition of BACE1 with small-molecule inhibitors or small interfering RNA blocked SSc and fibrotic stimuli-mediated fibroblast activation. Furthermore, we show that BACE1 regulation of dermal fibroblast activation is dependent on ß-catenin and Notch signaling. The neurotropic factor brain-derived neurotrophic factor negatively regulates BACE1 expression and activity in dermal fibroblasts. Finally, sera from patients with SSc show higher ß-amyloid and lower brain-derived neurotrophic factor levels than healthy controls. The ability of BACE1 to regulate SSc fibroblast activation reveals a therapeutic target in SSc. Several BACE1 inhibitors have been shown to be safe in clinical trials for Alzheimer's disease and could be repurposed to ameliorate fibrosis progression.

2.
Nat Commun ; 13(1): 1898, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393414

RESUMO

Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or "cancer-killing" viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , MicroRNAs/genética , Neoplasias/terapia , Vírus Oncolíticos/genética
3.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33741729

RESUMO

BACKGROUND: Multiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported. METHODS: This study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment. RESULTS: Using the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes. CONCLUSION: These data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.


Assuntos
Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Reoviridae/imunologia , Baço/imunologia , Microambiente Tumoral/imunologia , Animais , Medula Óssea/virologia , Linfócitos T CD8-Positivos/virologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/imunologia , Citotoxicidade Imunológica , Feminino , Humanos , Células Matadoras Naturais/virologia , Masculino , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/virologia , Vírus Oncolíticos/patogenicidade , Reoviridae/patogenicidade , Baço/virologia , Evasão Tumoral
4.
Ann Rheum Dis ; 80(7): 920-929, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33542104

RESUMO

OBJECTIVES: Plasmacytoid dendritic cells (pDC) have been implicated in the pathogenesis of autoimmune diseases, such as scleroderma (SSc). However, this has been derived from indirect evidence using ex vivo human samples or mouse pDC in vivo. We have developed human-specific pDC models to directly identify their role in inflammation and fibrosis, as well as attenuation of pDC function with BDCA2-targeting to determine its therapeutic application. METHODS: RNAseq of human pDC with TLR9 agonist ODN2216 and humanised monoclonal BDCA2 antibody, CBS004. Organotypic skin rafts consisting of fibroblasts and keratinocytes were stimulated with supernatant from TLR9-stimulated pDC and with CBS004. Human pDC were xenotransplanted into Nonobese diabetic/severe combined immunodeficiency (NOD SCID) mice treated with Aldara (inflammatory model), or bleomycin (fibrotic model) with CBS004 or human IgG control. Skin punch biopsies were used to assess gene and protein expression. RESULTS: RNAseq shows TLR9-induced activation of human pDC goes beyond type I interferon (IFN) secretion, which is functionally inactivated by BDCA2-targeting. Consistent with these findings, we show that BDCA2-targeting of pDC can completely suppress in vitro skin IFN-induced response. Most importantly, xenotransplantation of human pDC significantly increased in vivo skin IFN-induced response to TLR agonist and strongly enhanced fibrotic and immune response to bleomycin compared with controls. In these contexts, BDCA2-targeting suppressed human pDC-specific pathological responses. CONCLUSIONS: Our data indicate that human pDC play a key role in inflammation and immune-driven skin fibrosis, which can be effectively blocked by BDCA2-targeting, providing direct evidence supporting the development of attenuation of pDC function as a therapeutic application for SSc.


Assuntos
Células Dendríticas/imunologia , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Esclerodermia Localizada/imunologia , Esclerodermia Localizada/patologia , Animais , Células Dendríticas/patologia , Modelos Animais de Doenças , Fibrose , Xenoenxertos , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Esclerodermia Localizada/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/patologia
5.
Mol Ther ; 27(6): 1139-1152, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31053413

RESUMO

A clinical oncolytic herpes simplex virus (HSV) encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), talimogene laherparepvec, causes regression of injected and non-injected melanoma lesions in patients and is now licensed for clinical use in advanced melanoma. To date, limited data are available regarding the mechanisms of human anti-tumor immune priming, an improved understanding of which could inform the development of future combination strategies with improved efficacy. This study addressed direct oncolysis and innate and adaptive human immune-mediated effects of a closely related HSV encoding GM-CSF (HSVGM-CSF) alone and in combination with histone deacetylase inhibition. We found that HSVGM-CSF supported activation of anti-melanoma immunity via monocyte-mediated type I interferon production, which activates NK cells, and viral maturation of immature dendritic cells (iDCs) into potent antigen-presenting cells for cytotoxic T lymphocyte (CTL) priming. Addition of the histone deacetylase inhibitor valproic acid (VPA) to HSVGM-CSF treatment of tumor cells increased viral replication, viral GM-CSF production, and oncolysis and augmented the development of anti-tumor immunity. Mechanistically, VPA increased expression of activating ligands for NK cell recognition and induced expression of tumor-associated antigens, supporting innate NK cell killing and CTL priming. These data support the clinical combination of talimogene laherparepvec with histone deacetylase inhibition to enhance oncolysis and anti-tumor immunity.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Melanoma/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/metabolismo , Simplexvirus/imunologia , Neoplasias Cutâneas/terapia , Ácido Valproico/uso terapêutico , Antígenos de Neoplasias/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Sobrevivência Celular/genética , Células Dendríticas/imunologia , Quimioterapia Combinada , Vetores Genéticos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Herpesvirus Humano 1 , Humanos , Interferon Tipo I/metabolismo , Células Matadoras Naturais/imunologia , Células MCF-7 , Melanoma/patologia , Vírus Oncolíticos/genética , Simplexvirus/genética , Neoplasias Cutâneas/patologia , Linfócitos T Citotóxicos/imunologia
6.
Int J Oncol ; 54(2): 537-549, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30483772

RESUMO

Caveolin­1 (Cav­1) expression has been shown to be associated with tumor growth and resistance to chemotherapy in pancreatic cancer. The primary aim of this study was to explore the significance of Cav­1 expression in pancreatic cancer cells as compared to fibroblasts in relation to cancer cell proliferation and chemoresistance, both in vitro and in vivo, in an immunodeficient mouse model. We also aimed to evaluate the immunohistochemical expression of Cav­1 in the epithelial and stromal component of pancreatic cancer tissue specimens. The immunohistochemical staining of poorly differentiated tissue sections revealed a strong and weak Cav­1 expression in the epithelial tumor cells and stromal fibroblasts, respectively. Conversely, the well­differentiated areas were characterized by a weak epithelial Cav­1 expression. Cav­1 downregulation in cancer cells resulted in an increased proliferation in vitro; however, it had no effect on chemoresistance and growth gain in vivo. By contrast, the decreased expression of Cav­1 in fibroblasts resulted in a growth advantage and the chemoresistance of cancer cells when they were co­injected into immunodeficient mice to develop mixed fibroblast/cancer cell xenografts. On the whole, the findings of this study suggest that the downregulation of Cav­1 in fibroblasts is associated with an increased tumor proliferation rate in vivo and chemoresistance. Further studies are warranted to explore whether the targeting of Cav­1 in the stroma may represent a novel therapeutic approach in pancreatic cancer.


Assuntos
Caveolina 1/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Caveolina 1/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Transl Med ; 10(422)2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298869

RESUMO

Immune checkpoint inhibitors, including those targeting programmed cell death protein 1 (PD-1), are reshaping cancer therapeutic strategies. Evidence suggests, however, that tumor response and patient survival are determined by tumor programmed death ligand 1 (PD-L1) expression. We hypothesized that preconditioning of the tumor immune microenvironment using targeted, virus-mediated interferon (IFN) stimulation would up-regulate tumor PD-L1 protein expression and increase cytotoxic T cell infiltration, improving the efficacy of subsequent checkpoint blockade. Oncolytic viruses (OVs) represent a promising form of cancer immunotherapy. For brain tumors, almost all studies to date have used direct intralesional injection of OV, because of the largely untested belief that intravenous administration will not deliver virus to this site. We show, in a window-of-opportunity clinical study, that intravenous infusion of oncolytic human Orthoreovirus (referred to herein as reovirus) leads to infection of tumor cells subsequently resected as part of standard clinical care, both in high-grade glioma and in brain metastases, and increases cytotoxic T cell tumor infiltration relative to patients not treated with virus. We further show that reovirus up-regulates IFN-regulated gene expression, as well as the PD-1/PD-L1 axis in tumors, via an IFN-mediated mechanism. Finally, we show that addition of PD-1 blockade to reovirus enhances systemic therapy in a preclinical glioma model. These results support the development of combined systemic immunovirotherapy strategies for the treatment of both primary and secondary tumors in the brain.


Assuntos
Neoplasias Encefálicas/terapia , Vírus Oncolíticos/patogenicidade , Animais , Glioma/terapia , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/metabolismo
8.
Cell Cycle ; 9(21): 4297-306, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21051947

RESUMO

The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the "Autophagy Paradox". We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm "The Autophagic Tumor Stroma Model of Cancer Cell Metabolism" or "Battery-Operated Tumor Growth". In this sense, autophagy in the tumor stroma serves as a "battery" to fuel tumor growth, progression and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients-both effectively "starving" cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the upregulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an anti-cancer therapy that combines the alternating use of both autophagy promoters and autophagy inhibitors would be expected to prevent the onset of drug resistance. We also discuss why anti-angiogenic therapy has been found to promote tumor recurrence, progression and metastasis. More specifically, anti-angiogenic therapy would induce autophagy in the tumor stroma via the induction of stromal hypoxia, thereby converting a non-aggressive tumor type to a "lethal" aggressive tumor phenotype. Thus, uncoupling the metabolic parasitic relationship between cancer cells and an autophagic tumor stroma may hold great promise for anti-cancer therapy. Finally, we believe that autophagy in the tumor stroma is the local microscopic counterpart of systemic wasting (cancer-associated cachexia), which is associated with advanced and metastatic cancers. Cachexia in cancer patients is not due to decreased energy intake, but instead involves an increased basal metabolic rate and increased energy expenditures, resulting in a negative energy balance. Importantly, when tumors were surgically excised, this increased metabolic rate returned to normal levels. This view of cachexia, resulting in energy transfer to the tumor, is consistent with our hypothesis. So, cancer-associated cachexia may start locally as stromal autophagy, and then spread systemically. As such, stromal autophagy may be the requisite precursor of systemic cancer-associated cachexia.


Assuntos
Autofagia/fisiologia , Neoplasias/metabolismo , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Dano ao DNA , Instabilidade Genômica , Camundongos , MicroRNAs/metabolismo , Modelos Biológicos , Neoplasias/diagnóstico , Neoplasias/terapia , Prognóstico , Células Estromais/metabolismo
9.
Cell Cycle ; 9(17): 3534-51, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20864819

RESUMO

Our recent studies have mechanistically implicated a loss of stromal Cav-1 expression and HIF1-alpha-activation in driving the cancer-associated fibroblast phenotype, through the paracrine production of nutrients via autophagy and aerobic glycolysis. However, it remains unknown if HIF1a-activation is sufficient to confer the cancer-associated fibroblast phenotype. To test this hypothesis directly, we stably-expressed activated HIF1a in fibroblasts and then examined their ability to promote tumor growth using a xenograft model employing human breast cancer cells (MDA-MB-231). Fibroblasts harboring activated HIF1a showed a dramatic reduction in Cav-1 levels and a shift towards aerobic glycolysis, as evidenced by a loss of mitochondrial activity, and an increase in lactate production. Activated HIF1a also induced BNIP3 and BNIP3L expression, markers for the autophagic destruction of mitochondria. Most importantly, fibroblasts expressing activated HIF1a increased tumor mass by ∼2-fold and tumor volume by ∼3-fold, without a significant increase in tumor angiogenesis. In this context, HIF1a also induced an increase in the lymph node metastasis of cancer cells. Similar results were obtained by driving NFκB activation in fibroblasts, another inducer of autophagy. Thus, activated HIF1a is sufficient to functionally confer the cancer-associated fibroblast phenotype. It is also known that HIF1a expression is required for the induction of autophagy in cancer cells. As such, we next directly expressed activated HIF1a in MDA-MB-231 cells and assessed its effect on tumor growth via xenograft analysis. Surprisingly, activated HIF1a in cancer cells dramatically suppressed tumor growth, resulting in a 2-fold reduction in tumor mass and a 3-fold reduction in tumor volume. We conclude that HIF1a activation in different cell types can either promote or repress tumorigenesis. Based on these studies, we suggest that autophagy in cancer-associated fibroblasts promotes tumor growth via the paracrine production of recycled nutrients, which can directly "feed" cancer cells. Conversely, autophagy in cancer cells represses tumor growth via their "self-digestion". Thus, we should consider that the activities of various known oncogenes and tumor-suppressors may be compartment and cell-type specific, and are not necessarily an intrinsic property of the molecule itself. As such, other "classic" oncogenes and tumor suppressors will have to be re-evaluated to determine their compartment specific effects on tumor growth and metastasis. Lastly, our results provide direct experimental support for the recently proposed "Autophagic Tumor Stroma Model of Cancer".


Assuntos
Autofagia , Neoplasias da Mama/metabolismo , Fibroblastos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Lactatos/metabolismo , Metástase Linfática/patologia , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transplante Heterólogo
10.
Cell Cycle ; 9(17): 3485-505, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20861672

RESUMO

A loss of stromal Cav-1 in the tumor fibroblast compartment is associated with early tumor recurrence, lymph-node metastasis, and tamoxifen-resistance, resulting in poor clinical outcome in breast cancer patients. Here, we have used Cav-1 (-/-) null mice as a pre-clinical model for this "lethal tumor micro-environment." Metabolic profiling of Cav-1 (-/-) mammary fat pads revealed the upregulation of numerous metabolites (nearly 100), indicative of a major catabolic phenotype. Our results are consistent with the induction of oxidative stress, mitochondrial dysfunction, and autophagy/mitophagy. The two most prominent metabolites that emerged from this analysis were ADMA (asymmetric dimethyl arginine) and BHB (beta-hydroxybutyrate; a ketone body), which are markers of oxidative stress and mitochondrial dysfunction, respectively. Transcriptional profiling of Cav-1 (-/-) stromal cells and human tumor stroma from breast cancer patients directly supported an association with oxidative stress, mitochondrial dysfunction, and autophagy/mitophagy, as well as ADMA and ketone production. MircoRNA profiling of Cav-1 (-/-) stromal cells revealed the upregulation of two key cancer-related miR's, namely miR-31 and miR-34c. Consistent with our metabolic findings, these miR's are associated with oxidative stress (miR-34c) or activation of the hypoxic response/HIF1a (miR-31), which is sufficient to drive authophagy/mitophagy. Thus, via an unbiased comprehensive analysis of a lethal tumor micro-environment, we have identified a number of candidate biomarkers (ADMA, ketones, and miR-31/34c) that could be used to identify high-risk cancer patients at diagnosis, for treatment stratification and/or for evaluating therapeutic efficacy during anti-cancer therapy. We propose that the levels of these key biomarkers (ADMA, ketones/BHB, miR-31, and miR-34c) could be (1) assayed using serum or plasma from cancer patients, or (2) performed directly on excised tumor tissue. Importantly, induction of oxidative stress and autophagy/mitophagy in the tumor stromal compartment provides a means by which epithelial cancer cells can directly "feed off" of stromal-derived essential nutrients, chemical building blocks (amino acids, nucleotides), and energy-rich metabolites (glutamine, pyruvate, ketones/BHB), driving tumor progression and metastasis. Essentially, aggressive cancer cells are "eating" the cancer-associated fibroblasts via autophagy/mitophagy in the tumor micro-environment. Lastly, we discuss that this "Autophagic Tumor Stroma Model of Cancer Metabolism" provides a viable solution to the "Autophagy Paradox" in cancer etiology and chemo-therapy.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Arginina/análogos & derivados , Autofagia , Neoplasias da Mama/metabolismo , Estresse Oxidativo , Animais , Arginina/metabolismo , Biomarcadores/análise , Biomarcadores/sangue , Neoplasias da Mama/diagnóstico , Caveolina 1/genética , Caveolina 1/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/metabolismo , Modelos Biológicos , Células Estromais/metabolismo
11.
Cell Cycle ; 9(12): 2423-33, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20562526

RESUMO

Loss of stromal caveolin 1 (Cav-1) is a novel biomarker for cancer-associated fibroblasts that predicts poor clinical outcome in breast cancer and DCIS patients. We hypothesized that epithelial cancer cells may have the ability to drive Cav-1 downregulation in adjacent normal fibroblasts, thereby promoting the cancer associated fibroblast phenotype. To test this hypothesis directly, here we developed a novel co-culture model employing (i) human breast cancer cells (MCF7), and (ii) immortalized fibroblasts (hTERT-BJ1), which are grown under defined experimental conditions. Importantly, we show that co-culture of immortalized human fibroblasts with MCF7 breast cancer cells leads to Cav-1 downregulation in fibroblasts. These results were also validated using primary cultures of normal human mammary fibroblasts co-cultured with MCF7 cells. In this system, we show that Cav-1 downregulation is mediated by autophagic/lysosomal degradation, as pre-treatment with lysosome-specific inhibitors rescues Cav-1 expression. Functionally, we demonstrate that fibroblasts co-cultured with MCF7 breast cancer cells acquire a cancer associated fibroblast phenotype, characterized by Cav-1 downregulation, increased expression of myofibroblast markers and extracellular matrix proteins, and constitutive activation of TGFß/Smad2 signaling. siRNA-mediated Cav-1 downregulation mimics several key changes that occur in co-cultured fibroblasts, clearly indicating that a loss of Cav-1 is a critical initiating factor, driving stromal fibroblast activation during tumorigenesis. As such, this co-culture system can now be used as an experimental model for generating "synthetic" cancer associated fibroblasts (CAFs). More specifically, these "synthetic" CAFs could be used for drug screening to identify novel therapeutics that selectively target the Cav-1-negative tumor micro-environment. Our findings also suggest that chloroquine, or other autophagy/lysosome inhibitors, may be useful as anti-cancer agents, to therapeutically restore the expression of stromal Cav-1 in cancer associated fibroblasts. We discuss this possibility, in light of the launch of a new clinical trial that uses chloroquine to treat DCIS patients: PINC (Preventing Invasive Breast Neoplasia with Cholorquine) [See http://clinicaltrials.gov/show/NCT01023477].


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Caveolina 1/metabolismo , Fibroblastos/metabolismo , Actinas/biossíntese , Actinas/genética , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Caveolina 1/genética , Linhagem Celular Tumoral , Cloroquina/farmacologia , Técnicas de Cocultura , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Proteínas dos Microfilamentos/biossíntese , Proteínas dos Microfilamentos/genética , Fenótipo , Prognóstico , Proteína Smad2/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/metabolismo , Vimentina/biossíntese , Vimentina/genética , Calponinas
12.
Cell Cycle ; 9(12): 2412-22, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20562527

RESUMO

Previously, we proposed a new model for understanding the Warburg effect in tumorigenesis and metastasis. In this model, the stromal fibroblasts would undergo aerobic glycolysis (a.k.a., the Warburg effect)--producing and secreting increased pyruvate/lactate that could then be used by adjacent epithelial cancer cells as "fuel" for the mitochondrial TCA cycle, oxidative phosphorylation, and ATP production. To test this model more directly, here we used a matched set of metabolically well-characterized immortalized fibroblasts that differ in a single gene. CL3 fibroblasts show a shift towards oxidative metabolism, and have an increased mitochondrial mass. In contrast, CL4 fibroblasts show a shift towards aerobic glycolysis, and have a reduced mitochondrial mass. We validated these differences in CL3 and CL4 fibroblasts by performing an unbiased proteomics analysis, showing the functional upregulation of 4 glycolytic enzymes, namely ENO1, ALDOA, LDHA and TPI1, in CL4 fibroblasts. Many of the proteins that were upregulated in CL4 fibroblasts, as seen by unbiased proteomics, were also transcriptionally upregulated in the stroma of human breast cancers, especially in the patients that were prone to metastasis. Importantly, when CL4 fibroblasts were co-injected with human breast cancer cells (MDA-MB-231) in a xenograft model, tumor growth was dramatically enhanced. CL4 fibroblasts induced a > 4-fold increase in tumor mass, and a near 8-fold increase in tumor volume, without any measurable increases in tumor angiogenesis. In parallel, CL3 and CL4 fibroblasts both failed to form tumors when they were injected alone, without epithelial cancer cells. Mechanistically, under co-culture conditions, CL4 glycolytic fibroblasts increased mitochondrial activity in adjacent breast cancer cells (relative to CL3 cells), consistent with the "Reverse Warburg Effect". Notably, Western blot analysis of CL4 fibroblasts revealed a significant reduction in caveolin-1 (Cav-1) protein levels. In human breast cancer patients, a loss of stromal Cav-1 is associated with an increased risk of early tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. Thus, loss of stromal Cav-1 may be an effective marker for predicting the "Reverse Warburg Effect" in the stroma of human breast cancer patients. As such, CL4 fibroblasts are a new attractive model for mimicking the "glycolytic phenotype" of cancer-associated fibroblasts. Nutrients derived from glycolytic cancer associated fibroblasts could provide an escape mechanism to confer drug-resistance during anti-angiogenic therapy, by effectively reducing the dependence of cancer cells on a vascular blood supply.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caveolina 1/biossíntese , Proliferação de Células , Fibroblastos/metabolismo , Glicólise , Neovascularização Patológica , Animais , Neoplasias da Mama/irrigação sanguínea , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Células Estromais/metabolismo
13.
Cell Cycle ; 9(10): 1960-71, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20495363

RESUMO

We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the "Reverse Warburg Effect". In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the "Reverse Warburg Effect" or "Stromal-Epithelial Metabolic Coupling" in human breast cancers.


Assuntos
Caveolina 1/deficiência , Fibroblastos/metabolismo , Glicólise/efeitos dos fármacos , Lactato Desidrogenases/metabolismo , Piruvato Quinase/metabolismo , Animais , Western Blotting , Caveolina 1/genética , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Desoxiglucose/farmacologia , Ácido Dicloroacético/farmacologia , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Fibroblastos/citologia , Humanos , Imuno-Histoquímica , Lactato Desidrogenases/genética , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Proteômica , Piruvato Quinase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA