Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
4.
J Exp Bot ; 70(1): 285-300, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304441

RESUMO

Members of the cation diffusion facilitator (CDF) family have been identified in all kingdoms of life. They have been divided into three subgroups, namely Zn-CDF, Fe/Zn-CDF, and Mn-CDF, based on their putative specificity to transported metal ions. The plant metal tolerance protein 6 (MTP6) proteins fall into the Fe/Zn-CDF subgroup; however, their function in iron/zinc transport has not yet been confirmed. Here, we characterized the MTP6 protein from cucumber, Cucumis sativus. When expressed in yeast and in protoplasts isolated from Arabidopsis cells, CsMTP6 localized in mitochondria and contributed to the efflux of Fe and Mn from these organelles. Immunolocalization of CsMTP6 in cucumber membranes confirmed this association with mitochondria. Root expression and protein levels of CsMTP6 were significantly up-regulated in conditions of Fe deficiency and excess, but were not affected by Mn availability. These results indicate that MTP6 proteins contribute to the distribution of Fe and Mn between the cytosol and mitochondria of plant cells, and are regulated by Fe to maintain mitochondrial and cytosolic iron homeostasis under varying conditions of Fe availability.


Assuntos
Proteínas de Transporte de Cátions/genética , Cucumis sativus/fisiologia , Ferro/fisiologia , Manganês/fisiologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cucumis sativus/genética , Homeostase , Mitocôndrias/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
5.
Plant Sci ; 277: 196-206, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466585

RESUMO

Heterodimeric complexes formed by members of the cation facilitator (CDF) family catalyse the import of Zn into the secretory pathway of yeast and vertebrate cells. Orthologous proteins AtMTP5 and AtMTP12 from Arabidopsis have also been shown to form a heterodimeric complex at the Golgi compartment of plant cells that possibly transport Zn. In this study we show that cucumber proteins CsMTP5 and CsMTP12 form a functional heterodimer that is involved in the loading of Zn into the ER lumen under low Zn, and not in the detoxification of yeast from Zn excess through vesicle-mediated exocytosis. Using specific antibodies, we demonstrate that CsMTP5 is localized at the Golgi compartment of cucumber cells and is markedly up-regulated upon Zn deficiency. The level of CsMTP5 transcript in cucumber is also significantly elevated in Zn-limiting conditions, whereas the expression of CsMTP12 is independent of the availability of Zn. Therefore we propose that the cucumber heterodimeric complex CsMTP5-CsMTP12 functions to deliver Zn to Zn-dependent proteins of the Golgi compartment and is regulated by zinc at the level of CsMTP5 transcription.


Assuntos
Cucumis sativus/metabolismo , Proteínas de Plantas/metabolismo , Zinco/metabolismo , Complexo de Golgi/metabolismo , Peso Molecular
6.
Plant J ; 95(6): 988-1003, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932267

RESUMO

The plant metal tolerance protein family (MTP) includes 12 members that have been classified into three phylogenetically different subgroups - Zn-cation diffusion facilitator (CDF), Fe/Zn-CDF and Mn-CDF - based on their putative metal specificity. To date, only members belonging to the Zn-CDF or Mn-CDF group have been characterized functionally. The plant Fe/Zn-CDF subgroup includes two proteins, MTP6 and MTP7, but their function and metal specificity have not been confirmed. In this study we showed that cucumber CsMTP7 is a highly specific mitochondrial Fe importer that is able to confer yeast tolerance to Fe excess through increased accumulation of Fe in the mitochondria. We also demonstrated that CsMTP7 contributes to the increased accumulation of Fe in the mitochondria of Arabidopsis thaliana protoplasts. The transcripts and mitochondrial levels of CsMTP7 and ferritin - the iron-storing protein - are significantly increased in cucumber roots in response to Fe excess. This finding suggests that CsMTP7 and ferritin work in concert to accumulate Fe in plant mitochondria. As genes that encode orthologous proteins have been identified in phylogenetically distant organisms, including Archaea, cyanobacteria, humans and plants, but not in yeast, we concluded that the MTP7-mediated mitochondrial Fe accumulation may be conserved in the species, and express mitochondrial ferritin for mitochondrial Fe storage.


Assuntos
Cucumis sativus/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis , Cucumis sativus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Análise de Sequência de DNA
7.
Postepy Biochem ; 63(3): 210-220, 2017.
Artigo em Polonês | MEDLINE | ID: mdl-29294266

RESUMO

Iron is a transient metal essential for the proper growth and development of plants because as a component of the enzymes with a wide redox potential, iron contributes to the key cellular processes. During evolution, plants have developed a wide range of molecular mechanisms for the efficient control of iron homeostasis within their cells, tissues and organs. These include membrane proteins involved in the uptake, long-distance transport and intracellular distribution of iron as well as the iron-storing and iron-chelating proteins, that are involved in the protection of the plant cells from iron excess and/or ensure the proper growth and development of plants under Fe deficiency. Since iron is crucial for the functioning of plants, the proteins involved in the transport, chelation and storage of iron within plant cells are currently thoroughly studied. This work presents the current state of the art in the knowledge of these proteins and their regulatory mechanisms.


Assuntos
Plantas , Transporte Biológico , Homeostase , Ferro
8.
Biochim Biophys Acta Biomembr ; 1859(1): 117-125, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27836640

RESUMO

Acr3 is a plasma membrane transporter, a member of the bile/arsenite/riboflavin transporter (BART) superfamily, which confers high-level resistance to arsenicals in the yeast Saccharomyces cerevisiae. We have previously shown that the yeast Acr3 acts as a low affinity As(III)/H+ and Sb(III)/H+ antiporter. We have also identified several amino acid residues that are localized in putative transmembrane helices (TM) and appeared to be critical for the Acr3 activity. In the present study, the topology of Acr3 was investigated by insertion of glycosylation and factor Xa protease cleavage sites at predicted hydrophilic regions. The analysis of the glycosylation pattern and factor Xa cleavage products of resulting Acr3 fusion constructs provide evidence supporting a topological model of Acr3 with 10 TM segments and cytoplasmically oriented N- and C-terminal domains. Next, we investigated the role of the hydrophilic loop connecting TM8 and TM9, the large size of which is unique to members of the yeast Acr3 family of metalloid transporters. We found that a 28 amino acid deletion in this region does not affect Acr3 folding, trafficking substrate binding, or transport activity. Finally, we constructed a homology-based structural model of Acr3 using the crystal structure of the Yersinia frederiksenii homologue of the human bile acid sodium symporter ASBT.


Assuntos
Arsenitos/química , Membrana Celular/química , Proteínas de Membrana Transportadoras/química , Proteínas Recombinantes de Fusão/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Arsenitos/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Expressão Gênica , Glicosilação , Cinética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutagênese , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
9.
Mol Syst Biol ; 12(12): 892, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979908

RESUMO

A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical-experimental framework for disclosing the presence of such adaptation-speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation-accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic-adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data-driven individual-based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation-speeding mechanisms in general.


Assuntos
Arsênio/farmacologia , Proteínas de Bactérias/genética , Epigênese Genética , Mutação , Saccharomycetales/crescimento & desenvolvimento , Adaptação Fisiológica , Evolução Molecular , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Seleção Genética , Análise de Sequência de DNA , Biologia de Sistemas/métodos
10.
FEBS Lett ; 590(20): 3649-3659, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27607883

RESUMO

Arsenite is widely present in nature; therefore, cells have evolved mechanisms to prevent arsenite influx and promote efflux. In yeast (Saccharomyces cerevisiae), the aquaglyceroporin Fps1 mediates arsenite influx and efflux. The mitogen-activated protein kinase (MAPK) Hog1 has previously been shown to restrict arsenite influx through Fps1. In this study, we show that another MAPK, Slt2, is transiently phosphorylated in response to arsenite influx. Our findings indicate that the protein kinase activity of Slt2 is required for its role in arsenite tolerance. While Hog1 prevents arsenite influx via phosphorylation of T231 at the N-terminal domain of Fps1, Slt2 promotes arsenite efflux through phosphorylation of S537 at the C terminus. Our data suggest that Slt2 physically interacts with Fps1 and that this interaction depends on phosphorylation of S537. We hypothesize that Hog1 and Slt2 may affect each other's binding to Fps1, thereby controlling the opening and closing of the channel.


Assuntos
Arsenitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Membrana/química , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Serina/metabolismo , Tirosina/metabolismo
11.
Plant Mol Biol Report ; 34: 720-736, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27429510

RESUMO

Full-size members of the ABCG (ATP-binding cassette, subfamily G) subfamily of ABC transporters have been found only in plants and fungi. The plant genes encoding full-size ABCGs identified so far appeared to be differentially regulated under various environmental constraints, plant growth regulators, and microbial elicitors, indicating a broad functional role of these proteins in plant responses to abiotic and biotic stress. Nevertheless, the structure and physiological function of full-size ABCGs in many plant species are still unknown. We have recently identified 16 genes encoding full-size ABCG proteins in cucumber and found that the transcripts of two of them, CsABCG36 (CsPDR8) and CsABCG40 (CsPDR12), are most abundant in roots and are significantly affected by phytohormones and auxin herbicide. In this study, we analyzed the structure and phylogeny of all the full-size cucumber ABCG transporters and studied the organ expression profiles of the remaining 14 CsABCG genes. In addition, we investigated the effect of different plant growth regulators and the diterpene sclareolide on CsABCG expression in cucumber roots. Until now, the full-size plant ABCG transporters have been grouped into five different clusters. The new phylogenetic analysis of full-size ABCGs from model plants and cucumber clustered these proteins into six different subgroups. Interestingly, the expression profiles of cucumber ABCG genes assigned to the same clusters were not correlated, suggesting functional diversification or different regulatory mechanisms of the full-size cucumber ABCG proteins.

12.
IUBMB Life ; 67(10): 737-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26422816

RESUMO

Copper ATPases (Cu-ATPases) are ubiquitous transmembrane proteins using energy from ATP to transport copper across different biological membranes of prokaryotic and eukaryotic cells. As they belong to the P-ATPase family, Cu-ATPases contain a characteristic catalytic domain with an evolutionarily conserved aspartate residue phosphorylated by ATP to form a phosphoenzyme intermediate, as well as transmembrane helices containing a cation-binding cysteine-proline-cysteine/histidine/serine (CPx) motif for catalytic activation and cation translocation. In addition, most Cu-ATPases possess the N-terminal Cu-binding CxxC motif required for regulation of enzyme activity. In cells, the Cu-ATPases receive copper from soluble chaperones and maintain intracellular copper homeostasis by efflux of copper from the cell or transport of the metal into the intracellular compartments. In addition, copper pumps play an essential role in cuproprotein biosynthesis by the uptake of copper into the cell or delivery of the metal into the chloroplasts and thylakoid lumen or into the lumen of the secretory pathway, where the metal ion is incorporated into copper-dependent enzymes. In the recent years, significant progress has been made toward understanding the function and regulation of Cu-transporting ATPases in archaea, bacteria, yeast, humans, and plants, providing new insights into the specific physiological roles of these essential proteins in various organisms and revealing some conservative regulatory mechanisms of Cu-ATPase activity. In this review, the structural, biochemical, and functional properties of Cu-ATPases from phylogenetically different organisms are summarized and discussed, with particular attention given to the recent insights into the molecular biology of copper pumps in plants.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Cobre/metabolismo , Proteínas Fúngicas/fisiologia , Proteínas de Plantas/fisiologia , Animais , Transporte Biológico Ativo , ATPases Transportadoras de Cobre , Evolução Molecular , Humanos
13.
Plant J ; 84(6): 1045-58, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26485215

RESUMO

Members of the plant metal tolerance protein (MTP) family have been classified into three major groups - Zn-CDF, Mn-CDF and Zn/Fe-CDF - however, the selectivity of most of the MTPs has not been confirmed yet. Cucumber gene CsMTP9 encoding a putative CDF transporter homologous to members of the Mn-CDF cluster is expressed exclusively in roots. The relative abundance of CsMTP9 transcript and protein in roots is significantly increased under Mn excess and Cd. Immunolocalization with specific antibodies revealed that CsMTP9 is a plasma membrane transporter that localizes to the inner PM domain of root endodermal cells. The plasma membrane localization of CsMTP9 was confirmed by the expression of the fusion proteins of GFP (green fluorescent protein) and CsMTP9 in yeast and protoplasts prepared from Arabidopsis cells. In yeast, CsMTP9 transports Mn(2+) and Cd(2+) via a proton-antiport mechanism with an apparent Km values of approximately 10 µm and 2.5 µm for Mn(2+) and Cd(2+) , respectively. In addition, CsMTP9 expression in yeast rescues the Mn- and Cd-hypersensitive phenotypes through the enhanced efflux of Mn(2+) and Cd(2+) from yeast cells. Similarly, the overexpression of CsMTP9 in A. thaliana confers increased resistance of plants to Mn excess and Cd but not to other heavy metals and leads to the enhanced translocation of manganese and cadmium from roots to shoots. These findings indicate that CsMTP9 is a plasma membrane H(+) -coupled Mn(2+) and Cd(2+) antiporter involved in the efflux of manganese and cadmium from cucumber root cells by the transport of both metals from endodermis into vascular cylinder.


Assuntos
Antiporters/metabolismo , Cádmio/metabolismo , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Manganês/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Antiporters/genética , Transporte Biológico/fisiologia , Cádmio/toxicidade , Membrana Celular , Manganês/toxicidade , Dados de Sequência Molecular , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Saccharomyces/metabolismo
14.
Mol Microbiol ; 98(1): 162-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26123064

RESUMO

Acr3p is an As(III)/H(+) antiporter from Saccharomyces cerevisiae belonging to the bile/arsenite/riboflavin transporter superfamily. We have previously found that Cys151 located in the middle of the fourth transmembrane segment (TM4) is critical for antiport activity, suggesting that As(III) might interact with a thiol group during the translocation process. In order to identify functionally important residues involved in As(III)/H(+) exchange, we performed a systematic alanine-replacement analysis of charged/polar and aromatic residues that are conserved in the Acr3 family and located in putative transmembrane segments. Nine residues (Asn117, Trp130, Arg150, Trp158, Asn176, Arg230, Tyr290, Phe345, Asn351) were found to be critical for proper folding and trafficking of Acr3p to the plasma membrane. In addition, we found that replacement of highly conserved Phe266 (TM7), Phe352 (TM9), Glu353 (TM9) and Glu380 (TM10) with Ala abolished transport activity of Acr3p, while mutation of Ser349 (TM9) to Ala significantly reduced the As(III)/H(+) exchange, suggesting an important role of these residues in the transport mechanism. Detailed mutational analysis of Glu353 and Glu380 revealed that the negatively charged residues located in the middle of transmembrane segments TM9 and TM10 are crucial for antiport activity. We also discuss a hypothetical model of the Acr3p transport mechanism.


Assuntos
Antiporters/metabolismo , Arsênio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alanina/metabolismo , Sequência de Aminoácidos , Arsênio/química , Arsenitos/metabolismo , Bile/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , Transporte Proteico , Riboflavina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
15.
J Biol Chem ; 290(25): 15717-15729, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25963145

RESUMO

Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu(+) (Km ∼1 or 0.5 µM, respectively) and similar affinity to Ag(+) (Km ∼2.5 µM). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu(+) transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess.


Assuntos
Adenosina Trifosfatases , Cucumis sativus , Membranas Intracelulares , Proteínas de Membrana Transportadoras , Proteínas de Plantas , Vacúolos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Bases , Cobre/metabolismo , Cucumis sativus/enzimologia , Cucumis sativus/genética , Membranas Intracelulares/enzimologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacúolos/enzimologia , Vacúolos/genética
16.
Plant Sci ; 234: 50-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25804809

RESUMO

The aim of this study was to investigate the effect of cadmium on plasma membrane (PM) NADPH oxidase activity in cucumber roots. Plants were treated with cadmium for 1, 3 or 6 days. Some of the plants after 3-day exposure to cadmium were transferred to a medium without the heavy metal for the next 3 days. Treatment of plants with cadmium for 6 days stimulated the activity of NADPH oxidase. The highest stimulation of O2(•-) production by NADPH oxidase was observed in post-stressed plants, which was correlated with the stimulation of activity of PM H(+)-ATPase in the same conditions. In order to examine the effects of cadmium stresses on the expression level of genes encoding NADPH oxidase, putative cucumber homologs encoding RBOH proteins were selected and a real-time PCR assay was performed. NADPH is a substrate for oxidase; thus alterations in the activity of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP-isocitrate dehydrogenase and NADP-malic enzyme under cadmium stress were studied. The activity of NADPH dehydrogenases was increased under cadmium stress. The results indicate that PM NADPH oxidase could be involved in plants' response to cadmium stress by affecting the activity of PM H(+)-ATPase, and NADPH-generating enzymes could play important roles in this process.


Assuntos
Cádmio/toxicidade , Cucumis sativus/enzimologia , NADPH Oxidases/metabolismo , Sequência de Bases , Membrana Celular/enzimologia , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Dados de Sequência Molecular , NADPH Oxidases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética , Análise de Sequência de DNA
17.
Plant Cell Environ ; 38(6): 1127-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25210955

RESUMO

P1B-ATPases (heavy metal ATPases, HMAs) constitute a multigenic subfamily of P-ATPases involved in the transport of monovalent and divalent heavy metals in plant cells. Here, we present the organization of genes encoding the HMA family in the cucumber genome and report the function and biochemical properties of two cucumber proteins homologous to the HMA2-4-like plant HMAs. Eight genes encoding putative P1B -ATPases were identified in the cucumber genome. Among them, CsHMA3 was predominantly expressed in roots and up-regulated by Pb, Zn and Cd excess, whereas the CsHMA4 transcript was most abundant in roots and flowers of cucumber plants, and elevated under Pb and Zn excess. Expression of CsHMA3 in Saccharomyces cerevisiae enhanced yeast tolerance to Cd and Pb, whereas CsHMA4 conferred increased resistance of yeast cells to Cd and Zn. Immunostaining with specific antibodies raised against cucumber proteins revealed tonoplast localization of CsHMA3 and plasma membrane localization of CsHMA4 in cucumber root cells. Kinetic studies of CsHMA3 and CsHMA4 in yeast membranes indicated differing heavy metal cation affinities of these two proteins. Altogether, the results suggest an important role of CsHMA3 and CsHMA4 in Cd and Pb detoxification and Zn homeostasis in cucumber cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Cucumis sativus/enzimologia , Metais Pesados/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Bases , Cádmio/metabolismo , Membrana Celular/enzimologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Flores/enzimologia , Genes de Plantas/genética , Homeostase , Chumbo/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo
18.
J Exp Bot ; 66(3): 1001-15, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25422498

RESUMO

Metal-tolerance proteins (MTPs) are divalent cation transporters that have been shown to be essential for metal homeostasis and tolerance in model plants and hyperaccumulators. Due to the lack of genomic resources, studies on MTPs in cultivated crops are lacking. Here, we present the first functional characterization of genes encoding cucumber proteins homologous to MTP1 and MTP4 transporters. CsMTP1 expression was ubiquitous in cucumber plants, whereas CsMTP4 mRNA was less abundant and was not detected in the generative parts of the flowers. When expressed in yeast, CsMTP1 and CsMTP4 were able to complement the hypersensitivity of mutant strains to Zn and Cd through the increased sequestration of metals within vacuoles using the transmembrane electrochemical gradient. Both proteins formed oligomers at the vacuolar membranes of yeast and cucumber cells and localized in Arabidopsis protoplasts, consistent with their function in vacuolar Zn and Cd sequestration. Changes in the abundance of CsMTP1 and CsMTP4 transcripts and proteins in response to elevated Zn and Cd, or to Zn deprivation, suggested metal-induced transcriptional, translational, and post-translational modifications of protein activities. The differences in the organ expression and affinity of both proteins to Zn and Cd suggested that CsMTP1 and CsMTP4 may not be functionally redundant in cucumber cells.


Assuntos
Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poluentes do Solo/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cucumis sativus/metabolismo , Homeostase/efeitos dos fármacos , Dados de Sequência Molecular , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Vacúolos/metabolismo
19.
Biochim Biophys Acta ; 1839(11): 1295-306, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25234620

RESUMO

All organisms need to sense and respond to a range of stress conditions. In this study, we used transcriptional profiling to identify genes and cellular processes that are responsive during arsenite and tert-butyl hydroperoxide exposure in Kluyveromyces lactis. Many arsenite-responsive genes encode proteins involved in redox processes, protein folding and stabilization, and transmembrane transport. The majority of peroxide-responsive genes encode functions related to transcription, translation, redox processes, metabolism and transport. A substantial number of these stress-regulated genes contain binding motifs for the AP-1 like transcription factors KlYap1 and KlYap8. We demonstrate that KlYap8 binds to and regulates gene expression through a 13 base-pair promoter motif, and that KlYap8 provides protection against arsenite, antimonite, cadmium and peroxide toxicity. Direct transport assays show that Klyap8Δ cells accumulate more arsenic and cadmium than wild type cells and that the Klyap8Δ mutant is defective in arsenic and cadmium export. KlYap8 regulates gene expression in response to both arsenite and peroxide, and might cooperate with KlYap1 in regulation of specific gene targets. Comparison of KlYap8 with its Saccharomyces cerevisiae orthologue ScYap8 indicates that KlYap8 senses and responds to multiple stress signals whereas ScYap8 is only involved in the response to arsenite and antimonite. Thus, our data suggest that functional specialization of ScYap8 has occurred after the whole genome duplication event. This is the first genome-wide stress response analysis in K. lactis and the first demonstration of KlYap8 function.


Assuntos
Arsenitos/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Kluyveromyces/efeitos dos fármacos , Kluyveromyces/genética , Estresse Fisiológico/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas/genética , Kluyveromyces/metabolismo , Análise em Microsséries , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Transcriptoma
20.
J Exp Bot ; 65(18): 5367-84, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039075

RESUMO

Cation diffusion facilitator (CDF) proteins are ubiquitous divalent cation transporters that have been proved to be essential for metal homeostasis and tolerance in Archaebacteria, Bacteria, and Eukaryota. In plants, CDFs are designated as metal tolerance proteins (MTPs). Due to the lack of genomic resources, studies on MTPs in other plants, including cultivated crops, are lacking. Here, the identification and organization of genes encoding members of the MTP family in cucumber are described. The first functional characterization of a cucumber gene encoding a member of the Mn-CDF subgroup of CDF proteins, designated as CsMTP8 based on the highest homology to plant MTP8, is also presented. The expression of CsMTP8 in Saccharomyces cerevisiae led to increased Mn accumulation in yeast cells and fully restored the growth of mutants hypersensitive to Mn in Mn excess. Similarly, the overexpression of CsMTP8 in Arabidopsis thaliana enhanced plant tolerance to high Mn in nutrition media as well as the accumulation of Mn in plant tissues. When fused to green fluorescent protein (GFP), CsMTP8 localized to the vacuolar membranes in yeast cells and to Arabidopsis protoplasts. In cucumber, CsMTP8 was expressed almost exclusively in roots, and the level of gene transcript was markedly up-regulated or reduced under elevated Mn or Mn deficiency, respectively. Taken together, the results suggest that CsMTP8 is an Mn transporter localized in the vacuolar membrane, which participates in the maintenance of Mn homeostasis in cucumber root cells.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cucumis sativus/metabolismo , Manganês/farmacologia , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA