Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732421

RESUMO

The characterization of colleters in Rubiaceae is crucial for understanding their role in plant function. Analyzing colleters in Palicourea tetraphylla and Palicourea rudgeoides aims to deepen the understanding of these structures morphoanatomical and functional characteristics. The study reveals colleters with palisade epidermis and a parenchymatic central axis, classified as standard type, featuring vascularization and crystals. Colleter secretion, abundant in acidic mucopolysaccharides, proteins, and phenolic compounds, protects against desiccation. The ontogenesis, development, and senescence of the colleters are quite rapid and fulfill their role well in biotic and abiotic protection because these structures are present at different stages of development in the same stipule. Pronounced protrusions on the colleters surface, coupled with the accumulation of secretion in the intercellular and subcuticular spaces, suggest that the secretory process occurs through the wall, driven by pressure resulting from the accumulation of secretion. The microorganisms in the colleters' secretion, especially in microbiota-rich environments such as the Atlantic Forest, provide valuable information about plant-microorganism interactions, such as resistance to other pathogens and organisms and ecological balance. This enhanced understanding of colleters contributes to the role of these structures in the plant and enriches knowledge about biological interactions within specific ecosystems and the family taxonomy.

2.
ACS Nano ; 17(8): 7417-7430, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36877273

RESUMO

In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles (SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a dystrophic red latosol (oxysol). Herein, 500 ppm UA or SPIONs-framework carrying UA were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of 80% and a 16 h/8 h light-dark cycle (600 lx light intensity) for 30 days. Sterile ultrapure deionized water was used as the negative control; uncapped and oleic acid (OA) capped SPIONs were also tested to assess their potential effects. Magnetic nanostructures were synthesized by a coprecipitation method and characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, hydrodynamic diameter, magnetic measurements, and release kinetics of chemical cargo. Uncapped and OA-capped SPIONs did not significantly affect soil microbial community. Our results showed an impairment in the soil microbial community exposed to free UA, leading to a general decrease in negative effects on soil-based parameters when bioactive was loaded into the nanoscale magnetic carrier. Besides, compared to control, the free UA caused a significant decrease in microbial biomass C (39%), on the activity of acid protease (59%), and acid phosphatase (23%) enzymes, respectively. Free UA also reduced eukaryotic 18S rRNA gene abundance, suggesting a major impact on fungi. Our findings indicate that SPIONs as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nanoenabled biocides may improve agricultural productivity, which is important for food security due to the need of increasing food production.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Solo , Nanopartículas Magnéticas de Óxido de Ferro , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA