Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(37): 38548-38556, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39310177

RESUMO

Microfluidic devices (MFDs) offer customizable, low-cost, and low-waste platforms for performing chemical analyses. Optical spectroscopy techniques provide nondestructive monitoring of small sample volumes within microfluidic channels. Optical spectroscopy can probe speciation, oxidation state, and concentration of analytes as well as detect counterions and provide information about matrix composition. Here, ultraviolet-visible (UV-vis) absorbance, near-infrared (NIR) absorbance, and Raman spectroscopy are utilized on a custom poly(methyl methacrylate) (PMMA) MFD for the detection of three lanthanide nitrates in solution. Absorbance spectroscopies are conducted across three pathlengths using three portions of a contiguous channel within the MFD. Univariate and chemometric multivariate modeling, specifically Beer's law regression and principal component regression (PCR), respectively, are utilized to quantify the three lanthanides and the nitrate counterion. Models are composed of spectra from one or multiple pathlengths. Models are also constructed from multiblock spectra composed of UV-vis, NIR, and Raman spectra at one or multiple pathlengths. Root-mean-square errors (RMSE), limit of detection (LOD), and residual predictive deviation (RPD) values are compared for univariate, multivariate, multi-pathlength, and multiblock models. Univariate modeling produces acceptable results for analytes with a simple signal, such as samarium cations, producing an LOD of 5.49 mM. Multivariate and multiblock models produce enhanced quantification for analytes that experience spectral overlap and interfering nonanalyte signals, such as holmium, which had an LOD reduction from 7.21 mM for the univariate model down to 3.96 mM for the multiblock model. Multi-pathlength models are developed that maintain model errors in line with single-pathlength models. Multi-pathlength models have RPDs from 9.18 to 46.4, while incorporating absorbance spectra collected at optical paths of up to 10-fold difference in length.

2.
Appl Spectrosc ; 76(5): 580-589, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35108115

RESUMO

The study and development of present and future processes for the treatment/recycling of spent nuclear fuels require many steps, from design in the laboratory to setting up on an industrial scale. In all of these steps, analysis and instrumentation are key points. For scientific reasons (small-scale studies, control of phenomena, etc.) but also with regard to minimizing costs, risks, and waste, such developments are increasingly carried out on milli- or microfluidic devices. The logic is the same for the chemical analyses associated with their follow-up and interpretation. Due to this, over the last few years, opto-microfluidic analysis devices adapted to the monitoring of different processes (dissolution, liquid-liquid extraction, precipitation, etc.) have been increasingly designed and developed. In this work, we prove that photonic lab-on-a-chip (PhLoC) technology is fully suitable for all actinides concentration monitoring along the plutonium uranium refining extraction (plutonium, uranium, reduction, extraction, or Purex) process. Several PhLoC microfluidic platforms were specifically designed and used in different nuclear research and development (R&D) laboratories, to tackle actinides analysis in multiple oxidation states even in mixtures. The detection limits reached (tens of µmol·L-1) are fully compliant with on-line process monitoring, whereas a range of analyzable concentrations of three orders of magnitude can be covered with less than 150 µL of analyte. Finally, this work confirms the possibility and the potential of coupling Raman and ultraviolet-visible (UV-Vis) spectroscopies at the microfluidic scale, opening the perspective of measuring very complex mixtures.


Assuntos
Elementos da Série Actinoide , Plutônio , Urânio , Elementos da Série Actinoide/análise , Dispositivos Lab-On-A-Chip , Microfluídica , Plutônio/análise , Urânio/análise
3.
Dalton Trans ; 48(3): 839-842, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30542677

RESUMO

The complexation of Pu(iii) and Cm(iii) with a soft N-donor ligand was investigated using the van't Hoff method, microcalorimetry and DFT calculations. The studies revealed that the strength of the actinide-ligand bond as given by the enthalpic contribution drastically decreases on going from Pu(iii) to Cm(iii), while the complex stability remains nearly constant.

4.
Inorg Chem ; 55(13): 6511-9, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27322130

RESUMO

The N,N-dialkylamide DEHiBA (N,N-di-2-ethylhexyl-isobutyramide) is a promising alternative extractant to TBP (tri-n-butylphosphate) to selectively extract uranium(VI) from plutonium(IV) and spent nuclear fuel fission products. Extraction of technetium, present as pertechnetic acid (HTcO4) in the spent fuel solution, by DEHiBA was studied for different nitric acid and uranium concentrations. The uranium(VI) and technetium(VII) coextraction mechanism with DEHiBA was investigated to better understand the behavior of technetium in the solvent extraction process. Uranium and technetium distribution ratios were first determined from batch experiments. On the basis of these data, a thermodynamic model was developed. This model takes into account deviations from ideality in the aqueous phase using the simple solution concept. A good representation of uranium and technetium distribution data was obtained when considering the formation of (DEHiBA)i(HNO3)j(HTcO4)k complexes, as well as mixed (DEHiBA)2(UO2)(NO3)(TcO4) and (DEHiBA)3(UO2)(NO3)(TcO4)(HNO3) complexes, where one pertechnetate anion replaces one nitrate in the uranium coordination sphere in the two complexes (DEHiBA)2(UO2)(NO3)2 and (DEHiBA)3(UO2)(NO3)2(HNO3). Combination of complementary spectroscopic techniques (FT-IR and X-ray absorption) supported by theoretical calculations (density functional theory) enabled full characterization of the formation of mixed uranium-technetium species (DEHiBA)2(UO2)(NO3)(TcO4) in the organic phase for the first time. The structural parameters of this complex are reported in the paper and lead to the conclusion that the pertechnetate group coordinates the uranyl cation in a monodentate fashion in the inner coordination sphere. This study shows how combining a macroscopic approach (distribution data acquisition and modeling) with molecular-scale investigations (FT-IR and X-ray absorption analysis supported by theoretical calculations) can provide a new insight into the description of a solvent extraction mechanism.

5.
Chemistry ; 20(25): 7819-29, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24919439

RESUMO

The synthesis and evaluation of new extractants for spent nuclear fuel reprocessing are described. New bitopic ligands constituted of phenanthroline and 1,3,5-triazine cores functionalized by picolinamide groups were designed. Synthetic routes were investigated and optimized to obtain twelve new polyaza-heterocyclic ligands. In particular, an efficient and versatile methodology was developed to access non-symmetric 2-substituted-4,6-di(6-picolin-2-yl)-1,3,5-triazines from the 1,3,5-triazapentadiene precursor in the presence of anhydride reagents. Extraction studies showed the ability of both ligand series to extract and separate actinides selectively at different oxidation states (U(VI), Np(V,VI), Am(III), Cm(III), and Pu(IV)) from an acidic solution (3 M HNO3). Phenanthroline-based ligands show the most promising efficiency for use in the group actinide extraction (GANEX) process due to a higher number of donor nitrogen atoms and a suitable pre-organization of the dipicolinamide-1,10-phenanthroline architecture.

6.
Inorg Chem ; 51(23): 12638-49, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23152978

RESUMO

Complexation of trivalent actinides with DTPA (diethylenetriamine pentaacetic acid) was studied as a function of pcH and temperature in (Na,H)Cl medium of 0.1 M ionic strength. Formation constants of both complexes AnHDTPA(-) and AnDTPA(2-) (where An stands for Am, Cm, and Cf) were determined by TRLFS, CE-ICP-MS, spectrophotometry, and solvent extraction. The values of formation constants obtained from the different techniques are coherent and consistent with reinterpreted literature data, showing a higher stability of Cf complexes than Am and Cm complexes. The effect of temperature indicates that formation constants of protonated and nonprotonated complexes are exothermic with a high positive entropic contribution. DFT calculations were also performed on the An/DTPA system. Geometry optimizations were conducted on AnDTPA(2-) and AnHDTPA(-) considering all possible protonation sites. For both complexes, one and two water molecules in the first coordination sphere of curium were also considered. DFT calculations indicate that the lowest energy structures correspond to protonation on oxygen that is not involved in An-DTPA bonds and that the structures with two water molecules are not stable.


Assuntos
Elementos da Série Actinoide/química , Compostos Organometálicos/síntese química , Ácido Pentético/química , Concentração de Íons de Hidrogênio , Compostos Organometálicos/química , Teoria Quântica
7.
Inorg Chem ; 50(14): 6557-66, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21657800

RESUMO

New functionalized terpyridine-diamide ligands were recently developed for the group actinide separation by solvent extraction. In order to acquire a better understanding of their coordination mode in solution, protonation and complexation of lanthanides(III), americium(III), and uranium(VI) with these bitopic N,O-bearing ligands were studied in homogeneous methanol/water conditions by experimental and theoretical approaches. UV-visible spectrophotometry was used to determine the protonation and stability constants of te-tpyda and dedp-tpyda. The conformations of free and protonated forms of te-tpyda were investigated using NMR and theoretical calculations. The introduction of amide functional groups on the terpyridine moiety improved the extracting properties of these new ligands by lowering their basicity and enhancing the stability of the corresponding 1:1 complexes with lanthanides(III). Coordination of these ligands was studied by density functional theory and molecular dynamics calculations, especially to evaluate potential participation of hard oxygen and soft nitrogen atoms in actinide coordination and to correlate with their affinity and selectivity. Two predominant inner-sphere coordination modes were found from the calculations: one mode where the cation is coordinated by the nitrogen atoms of the cavity and by the amide oxygen atoms and the other mode where the cation is only coordinated by the two amide oxygen atoms and by solvent molecules. Further simulations and analysis of UV-visible spectra using both coordination modes indicate that inner-sphere coordination with direct complexation of the three nitrogen and two oxygen atoms to the cation leads to the most likely species in a methanol/water solution.

8.
Inorg Chem ; 44(5): 1404-12, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15732980

RESUMO

To better understand the bonding in complexes of f-elements by polydentate N-donor ligands, the complexation of americium(III) and lanthanide(III) cations by 2-amino-4,6-di-(pyridin-2-yl)-1,3,5-triazine (ADPTZ) was studied using a thermodynamic approach. The stability constants of the 1:1 complexes in a methanol/water mixture (75/25 vol %) were determined by UV-visible spectrophotometry for every lanthanide(III) ion (except promethium), and yttrium(III) and americium(III) cations. The thermodynamic parameters (DeltaH degrees , DeltaS degrees) of complexation were determined from the temperature dependence of the stability constants and by microcalorimetry. The trends of the variations of DeltaG degrees , DeltaH degrees , and DeltaS degrees across the lanthanide series are compared with published results for other tridentate ligands and confirm strongly ionic bonding in the lanthanide-ADPTZ complexes. Comparison of the thermodynamic properties between the Am- and Ln-ADPTZ complexes highlights an increase in stability of the complexes by a factor of 20 in favor of the americium cation. This difference arises from a more exothermic reaction enthalpy in the case of Am, which is correlated with a greater degree of covalency in the americium-nitrogen bonds. Quantum chemistry calculations performed on a series of trivalent actinide and lanthanide-ADPTZ complexes support the experimental results, showing a slightly greater covalence in the actinide-ligand bonds that originates from a charge transfer from the ligand sigma orbitals to the 5f and 6d orbitals of the actinide ion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA