RESUMO
In the last 4 years, the world has experienced two pandemics of bat-borne viruses. Firstly, in 2019 the SARS-CoV-2 pandemic started and has been causing millions of deaths around the world. In 2022, a Monkeypox pandemic rose in various countries of the world. Those pandemics have witnessed movements and initiatives from healthcare and research institutions to establish a worldwide understanding to battle any future pandemics and biological threats. One Health concept is a modern, comprehensive, unifying ways to improve humans, animals, and ecosystems' health. This concept shows how much they are intertwined and related to one another, whether it is an environmental, or a pathological relation. This review aims to describe Poxviridae and its impact on the One Health concept, by studying the underlying causes of how poxviruses can affect the health of animals, humans, and environments. Reviewing the effect of disease transmission between animal to human, human to human, and animal to animal with pox viruses as a third party to achieve a total understanding of infection and viral transmission. Thus, contributing to enhance detection, diagnosis, research, and treatments regarding the application of One Health.
Assuntos
Saúde Única , Infecções por Poxviridae , Poxviridae , Humanos , Animais , Infecções por Poxviridae/virologia , Infecções por Poxviridae/transmissão , Infecções por Poxviridae/epidemiologia , Poxviridae/fisiologia , Poxviridae/patogenicidade , Poxviridae/genética , COVID-19/virologia , COVID-19/transmissão , COVID-19/epidemiologia , Zoonoses/virologia , Zoonoses/transmissão , Zoonoses/epidemiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Pandemias , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Zoonoses Virais/epidemiologiaRESUMO
Bat borne disease have attracted many researchers for years. The ability of the bat to host several exogenous viruses has been a focal point in research lately. The latest pandemic shifted the focus of scholars towards understanding the difference in response to viral infection between humans and bats. In a way to understand the basis of the interaction and behaviour between SARS-CoV-2 and the environment, a conflict between different researchers across the globe arose. This conflict asked many questions about the truth of virus-host integration, whether an interaction between RNA viruses and human genomes has ever been reported, the possible route and mechanism that could lead to genomic integration of viral sequences and the methods used to detect integration. This article highlights those questions and will discuss the diverse opinions of the controversy and provide examples on reported integration mechanisms and possible detection techniques.
Assuntos
COVID-19 , Quirópteros , Viroses , Animais , Humanos , SARS-CoV-2/genética , Genoma Humano , COVID-19/genética , Viroses/genética , Genoma Viral , FilogeniaRESUMO
Bat-borne viruses have attracted considerable research, especially in relation to the Covid-19 pandemic. Although bats can carry multiple zoonotic viruses that are lethal to many mammalian species, they appear to be asymptomatic to viral infection despite the high viral loads contained in their bodies. There are several differences between bats and other mammals. One of the major differences between bats and other mammals is the bats' ability to fly, which is believed to have induced evolutionary changes. It may have also favoured them as suitable hosts for viruses. This is related to their tolerance to viral infection. Innate immunity is the first line of defence against viral infection, but bats have metamorphosed the type of responses induced by innate immunity factors such as interferons. The expression patterns of interferons differ, as do those of interferon-related genes such as interferon regulatory factors and interferon-stimulated genes that contribute to the antiviral response of infected cells. In addition, the signalling pathways related to viral infection and immune responses have been subject to evolutionary changes, including mutations compared to their homologues in other mammals and gene selection. This article discusses the differences in the interferon-mediated antiviral response in bats compared to that of other mammals and how these differences are correlated to viral tolerance in bats. The effect of bat interferons related genes on human antiviral response against bat-borne viruses is also discussed.
Assuntos
Quirópteros , Viroses , Vírus , Animais , Humanos , Linhagem Celular , Pandemias , Interferons/genética , Viroses/tratamento farmacológico , Viroses/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo , GenômicaRESUMO
AIMS: This study aims to investigate the influence of MEF2A and SLC22A3-LPAL2-LPA polymorphisms on cardiovascular disease susceptibility and responsiveness to warfarin medication in Jordanian patients, during the initiation and maintenance phases of treatment. BACKGROUNDS: Several candidate genes have been reported to be involved in warfarin metabolism and studying such genes may help in finding an accurate way to determine the needed warfarin dose to lower the risk of adverse drug effects, resulting in more safe anticoagulant therapy. METHODS: The study population included 212 cardiovascular patients and 213 healthy controls. Genotyping of MEF2A and SLC22A3-LPAL2-LPA polymorphisms was conducted to examine their effects on warfarin efficiency and cardiovascular disease susceptibility using PCR-based methods. RESULTS: One SNP (SLC22A3-LPAL2-LPA rs10455872) has been associated with cardiovascular disease in the Jordanian population, whereas the other SNPs in the MEF2A gene and SLC22A3-LPAL2-LPA gene cluster did not have any significant differences between cardiovascular patients and healthy individuals. Moreover, SLC22A3-LPAL2-LPA rs10455872 was correlated with moderate warfarin sensitivity, the other SNPs examined in the current study have not shown any significant associations with warfarin sensitivity and responsiveness. CONCLUSION: Our data refer to a lack of correlation between the MEF2A polymorphism and the efficacy of warfarin treatment in both phases of treatment, the initiation, and maintenance phases. However, only rs10455872 SNP was associated with sensitivity to warfarin during the initiation phase. Furthermore, rs3125050 has been found to be associated with the international normalized number treatment outcomes in the maintenance phase.
Assuntos
Doenças Cardiovasculares , Humanos , Varfarina/farmacologia , Jordânia , Predisposição Genética para Doença , Lipoproteína(a)/genética , Polimorfismo de Nucleotídeo Único , Anticoagulantes , Genótipo , Fatores de Transcrição MEF2/genéticaRESUMO
Rodents are one of the most abundant mammal species in the world. They form more than two-fifth of all mammal species and there are approximately 4600 existing rodent species. Rodents are capable of transmitting deadly diseases, especially those that are caused by viruses. Viruses and their consequences have plagued the world for the last two centuries, three pandemics occurred during the last century only. The Middle East is situated at the crossroads of Africa and Asia, along with the Mediterranean Sea and the Indian Ocean, its geographic importance is gained through the diversity of topographies, biosphere, as well as climate aspects that make the region vulnerable to host emerging diseases. Refugee crises also play a major role in expected epidemic outbreaks in the region. Public health has always been the most important priority, and our aim in this review is to raise awareness among public health organisations across the Middle East about the dangers of rodent borne diseases that have been reported or are suspected to be found in the region.