Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 256: 113432, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31662270

RESUMO

The concentration and isotopic composition of mercury (Hg) were studied in frozen soils along a southwest-northeast transect over the Himalaya-Tibet. Soil total Hg (HgT) concentrations were significantly higher in the southern slopes (72 ±â€¯54 ng g-1, 2SD, n = 21) than those in the northern slopes (43 ±â€¯26 ng g-1, 2SD, n = 10) of Himalaya-Tibet. No significant relationship was observed between HgT concentrations and soil organic carbon (SOC), indicating that the HgT variation was not governed by SOC. Soil from the southern slopes showed significantly negative mean δ202Hg (-0.53 ±â€¯0.50‰, 2SD, n = 21) relative to those from the northern slopes (-0.12 ±â€¯0.40‰, 2SD, n = 10). The δ202Hg values of the southern slopes are more similar to South Asian anthropogenic Hg emissions. A significant correlation between 1/HgT and δ202Hg was observed in all the soil samples, further suggesting a mixing of Hg from South Asian anthropogenic emissions and natural geochemical background. Large ranges of Δ199Hg (-0.45 and 0.24‰) were observed in frozen soils. Most of soil samples displayed negative Δ199Hg values, implying they mainly received Hg from gaseous Hg(0) deposition. A few samples had slightly positive odd-MIF, indicating precipitation-sourced Hg was more prevalent than gaseous Hg(0) in certain areas. The spatial distribution patterns of HgT concentrations and Hg isotopes indicated that Himalaya-Tibet, even its northern part, may have been influenced by transboundary atmospheric Hg pollution from South Asia.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Poluentes do Solo/análise , Ásia , Carbono , Gases , Isótopos , Isótopos de Mercúrio/análise , Solo/química , Tibet
2.
RSC Adv ; 8(10): 5321-5330, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35542446

RESUMO

Quantification of hydroxyl radical concentration using two chemical probes was assessed through the Fenton reaction. The probes were 1,2-benzopyrone (coumarin) for fluorescence and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) for electron spin resonance (ESR). The corresponding hydroxylated species, namely 7-hydroxycoumarin (7HC) and 2-hydroxy-5,5-dimethyl-1-pyrroline-N-oxide (DMPO-OH adduct), were monitored by fluorescence and ESR-spin trapping techniques, respectively. The experiments were designed according to the theoretical conditions determined for stable fluorescence and EPR signals. The results demonstrate that: the optimal [chemical probe] : [H2O2] ratio predicted by a simplified quasi-steady-state model was in good agreement with the optimal [chemical probe] : [H2O2] ratio observed experimentally for [H2O2] : [Fe2+] = 10, and the proper adjustment of the [chemical probe] : [H2O2] ratio at a given concentration of the Fenton's reagent improves the detected amount of hydroxyl radicals. Finally, using DMPO required a higher concentration compared to coumarin to yield the same amount of ˙OH detected but resulted in a more reliable probe for detecting ˙OH under the consideration of this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA