Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anaesthesiol Intensive Ther ; 56(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741438

RESUMO

Throughout the past decades ultrasonography did not prove to be a procedure of choice if regarded as part of the routine bedside examination. The reason was the assumption defining the lungs and the bone structures as impenetrable by ultrasound. Only during the recent several years has the approach to the use of such tool in clinical daily routines changed dramatically to offer so-called point-of-care ultrasonography (POCUS). Both vertical and horizontal artefacts became valuable sources of information about the patient's clinical condition, assisting therefore the medical practitioner in differential diagnosis and monitoring of the patient. What is important is that the information is delivered in real time, and the procedure itself is non-invasive. The next stage marking the progress made in this area of diagnostic imaging is the development of arti-ficial intelligence (AI) based on machine learning algorithms. This article is intended to present the available, innovative solutions of the ultrasound systems, including Smart B-line technology, to ensure automatic identification process, as well as interpretation of B-lines in the given lung area of the examined patient. The article sums up the state of the art in ultrasound artefacts and AI applied in POCUS.


Assuntos
Inteligência Artificial , Sistemas Automatizados de Assistência Junto ao Leito , Ultrassonografia , Humanos , Ultrassonografia/métodos , Artefatos , Doenças Respiratórias/diagnóstico por imagem , Sistema Respiratório/diagnóstico por imagem
2.
J Pers Med ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38541028

RESUMO

The diagnostic process in Intensive Care Units has been revolutionized by ultrasonography and accelerated by artificial intelligence. Patients in critical condition are often sonoanatomically challenging, with time constraints being an additional stress factor. In this paper, we describe the technology behind the development of AI systems to support diagnostic ultrasound in intensive care units. Among the AI-based solutions, the focus was placed on systems supporting cardiac ultrasound, such as Smart-VTI, Auto-VTI, SmartEcho Vue, AutoEF, Us2.ai, and Real Time EF. Solutions to assist hemodynamic assessment based on the evaluation of the inferior vena cava, such as Smart-IVC or Auto-IVC, as well as to facilitate ultrasound assessment of the lungs, such as Smart B-line or Auto B-line, and to help in the estimation of gastric contents, such as Auto Gastric Antrum, were also discussed. All these solutions provide doctors with support by making it easier to obtain appropriate diagnostically correct ultrasound images by automatically performing time-consuming measurements and enabling real-time analysis of the obtained data. Artificial intelligence will most likely be used in the future to create advanced systems facilitating the diagnostic and therapeutic process in intensive care units.

3.
J Pers Med ; 14(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541052

RESUMO

Artificial intelligence has now changed regional anesthesia, facilitating, therefore, the application of the regional block under the USG guidance. Innovative technological solutions make it possible to highlight specific anatomical structures in the USG image in real time, as needed for regional block. This contribution presents such technological solutions as U-Net architecture, BPSegData and Nerveblox and the basis for independent assisting systems in the use of regional blocks, e.g., ScanNav Anatomy PNB or the training system NeedleTrainer. The article describes also the systems integrated with the USG devices, such as Mindray SmartNerve or GE cNerve as well as the robotic system Magellan which substantially increases the patient's safety, time needed for the regional block and quality of the procedure. All the solutions presented in this article facilitate the performance of regional blocks by less experienced physicians and appear as an excellent educational tool which, at the same time, improves the availability of the more and more popular regional anesthesia. Will, therefore, artificial intelligence replace physicians in regional block procedures? This seems unlikely. It will, however, assist them in a significant manner, contributing to better effectiveness and improved safety of the patient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA