RESUMO
Intracellular uptake of adenosine is essential for optimal erythroid commitment and differentiation of hematopoietic progenitor cells. The role of adenosine signaling is well documented in the regulation of blood flow, cell proliferation, apoptosis, and stem cell regeneration. However, the role of adenosine signaling in hematopoiesis remains unclear. In this study, we show that adenosine signaling inhibits the proliferation of erythroid precursors by activating the p53 pathway and hampers the terminal erythroid maturation. Furthermore, we demonstrate that the activation of specific adenosine receptors promotes myelopoiesis. Overall, our findings indicate that extracellular adenosine could be a new player in the regulation of hematopoiesis.
Assuntos
Adenosina , Eritropoese , Humanos , Adenosina/metabolismo , Hematopoese , Mielopoese , Células-Tronco Hematopoéticas/metabolismo , Diferenciação CelularRESUMO
BACKGROUND: Sickle cell disease (SCD) remains prevalent because heterozygous carriers (HbAS) are partially resistant to Plasmodium falciparum malaria. Sickle hemoglobin (HbS) polymerization in low and intermediate oxygen (O2 ) conditions is the main driver of HbAS-driven resistance to P. falciparum malaria. However, epidemiological studies have reported mixed malaria morbidity and mortality outcomes in individuals with sickle cell disease (SCD). While maximum-tolerated dose hydroxyurea has been shown to lower malaria incidence, fetal hemoglobin (HbF), an inhibitor of HbS polymerization that is variably packaged in F-erythrocytes, might provide hemoglobin that is accessible to the parasite for feeding. METHODS: To explore that risk, we examined the effect of variable mean corpuscular fetal hemoglobin (MCHF) on P. falciparum proliferation, invasion, and development in HbSS RBCs. RESULTS: We found that greater MCHF in HbSS red blood cells (RBCs) is associated with increased P. falciparum proliferation in O2 environments comparable with the microcirculation. Moreover, both parasite invasion and intracellular growth, the major components of proliferation, occur predominantly in F-erythrocytes and are augmented with increasing MCHF. CONCLUSIONS: HbF modifies P. falciparum infection in HbSS RBCs, further highlighting the complexity of the molecular interactions between these two diseases. Other inhibitors of HbS polymerization that do not increase HbF or F-erythrocytes should be independently assessed for their effects on P. falciparum malaria proliferation in HbSS RBCs.
Assuntos
Anemia Falciforme , Malária Falciparum , Plasmodium falciparum , Humanos , Hemoglobina Fetal , Proliferação de Células , EritrócitosRESUMO
BACKGROUND: An antibody directed against a high-prevalence red blood cell (RBC) antigen was detected in a 67-year-old female patient of North African ancestry with a history of a single pregnancy and blood transfusion. So far, the specificity of the proband's alloantibody remained unknown in our immunohematology reference laboratory. STUDY DESIGN AND METHODS: Whole-exome sequencing (WES) was performed on the proband's DNA. The reactivity to the SLC29A1-encoded ENT1 adenosine transporter was investigated by flow cytometry analyses of ENT1-expressing HEK293 cells, and RBCs from Augustine-typed individuals. Erythrocyte protein expression level, nucleoside-binding capacity, and molecular structure of the proband's ENT1 variant were further explored by western blot, flow cytometry, and molecular dynamics calculations, respectively. RESULTS: A missense variant was identified in the SLC29A1 gene, which encodes the Augustine blood group system. It arises from homozygosity for a rare c.242A > G missense mutation that results in a nonsynonymous p.Asn81Ser substitution within the large extracellular loop of ENT1. Flow cytometry analyses demonstrated that the proband's antibody was reactive against HEK-293 cells transfected with control but not proband's SLC29A1 cDNA. Consistent with this finding, proband's antibody was found to be reactive with At(a-) (AUG:-2), but not AUG:-1 (null phenotype) RBCs. Data from structural analysis further supported that the proband's p.Asn81Ser variation does not alter ENT1 binding of its specific inhibitor NBMPR. CONCLUSION: Our study provides evidence for a novel high-prevalence antigen, AUG4 (also called ATAM after the proband's name) in the Augustine blood group system, encoded by the rare SLC29A1 variant allele AUG*04 (c.242A > G, p.Asn81Ser).
Assuntos
Antígenos de Grupos Sanguíneos , Gravidez , Feminino , Humanos , Células HEK293 , Prevalência , Antígenos de Grupos Sanguíneos/genética , Isoanticorpos , Estrutura MolecularRESUMO
Blood phenotypes are defined by the presence or absence of specific blood group antigens at the red blood cell (RBC) surface, due to genetic polymorphisms among individuals. The recent development of genomic and proteomic approaches enabled the characterization of several enigmatic antigens. The choline transporter-like protein CTL2 encoded by the SLC44A2 gene plays an important role in platelet aggregation and neutrophil activation. By investigating alloantibodies to a high-prevalence antigen of unknown specificity, found in patients with a rare blood type, we showed that SLC44A2 is also expressed in RBCs and carries a new blood group system. Furthermore, we identified three siblings homozygous for a large deletion in SLC44A2, resulting in complete SLC44A2 deficiency. Interestingly, the first-ever reported SLC44A2-deficient individuals suffer from progressive hearing impairment, recurrent arterial aneurysms, and epilepsy. Furthermore, SLC44A2null individuals showed no significant platelet aggregation changes and do not suffer from any apparent hematological disorders. Overall, our findings confirm the function of SLC44A2 in hearing preservation and provide new insights into the possible role of this protein in maintaining cerebrovascular homeostasis.
Assuntos
Perda Auditiva , Proteômica , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Perda Auditiva/genética , Fenótipo , Glicoproteínas de Membrana/metabolismoRESUMO
Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 proteins to the cell surface. Pathogenic variants in several genes that participate in GPI biosynthesis cause inherited GPI deficiency disorders. Here, we reported that homozygous null alleles of PIGG, a gene involved in GPI modification, are responsible for the rare Emm-negative blood phenotype. Using a panel of K562 cells defective in both the GPI-transamidase and GPI remodeling pathways, we show that the Emm antigen, whose molecular basis has remained unknown for decades, is carried only by free GPI and that its epitope is composed of the second and third ethanolamine of the GPI backbone. Importantly, we show that the decrease in Emm expression in several inherited GPI deficiency patients is indicative of GPI defects. Overall, our findings establish Emm as a novel blood group system, and they have important implications for understanding the biological function of human free GPI.
Assuntos
Antígenos de Grupos Sanguíneos , Deficiências do Desenvolvimento , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Convulsões , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Glicosilfosfatidilinositóis/genética , Humanos , Células K562 , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Convulsões/enzimologia , Convulsões/genéticaRESUMO
The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1-/- mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis.
Assuntos
Monofosfato de Adenosina/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Eritropoese , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Animais , Transportador Equilibrativo 1 de Nucleosídeo/genética , Humanos , Camundongos , Camundongos KnockoutRESUMO
The rare PEL-negative phenotype is one of the last blood groups with an unknown genetic basis. By combining whole-exome sequencing and comparative global proteomic investigations, we found a large deletion in the ABCC4/MRP4 gene encoding an ATP-binding cassette (ABC) transporter in PEL-negative individuals. The loss of PEL expression on ABCC4-CRISPR-Cas9 K562 cells and its overexpression in ABCC4-transfected cells provided evidence that ABCC4 is the gene underlying the PEL blood group antigen. Although ABCC4 is an important cyclic nucleotide exporter, red blood cells from ABCC4null/PEL-negative individuals exhibited a normal guanosine 3',5'-cyclic monophosphate level, suggesting a compensatory mechanism by other erythroid ABC transporters. Interestingly, PEL-negative individuals showed an impaired platelet aggregation, confirming a role for ABCC4 in platelet function. Finally, we showed that loss-of-function mutations in the ABCC4 gene, associated with leukemia outcome, altered the expression of the PEL antigen. In addition to ABCC4 genotyping, PEL phenotyping could open a new way toward drug dose adjustment for leukemia treatment.