Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36236411

RESUMO

In nuclear power plants, particle accelerators, and other nuclear facilities, measuring the level of ionising gamma radiation is critical for the safety and management of the operation and the environment's protection. However, in many cases, it is impossible to monitor ionising radiation directly at the required location continuously. This is typically either due to the lack of space to accommodate the entire dosimeter or in environments with high ionising radiation activity, electromagnetic radiation, and temperature, which significantly shorten electronics' lifetime. To allow for radiation measurement in such scenarios, we designed a fibre optic dosimeter that introduces an optical fibre link to deliver the scintillation radiation between the ionising radiation sensor and the detectors. The sensors can thus be placed in space-constrained and electronically hostile locations. We used silica optical fibres that withstand high radiation doses, high temperatures, and electromagnetic interference. We use a single photon counter and a photomultiplier to detect the transmitted scintillation radiation. We have shown that selected optical fibres, combined with different scintillation materials, are suitable for measuring gamma radiation levels in hundreds of kBq. We present the architecture of the dosimeter and its experimental characterisation with several combinations of optical fibres, detectors, and scintillation crystals.


Assuntos
Fibras Ópticas , Dosímetros de Radiação , Fenômenos Físicos , Radiometria , Contagem de Cintilação , Dióxido de Silício
2.
Sensors (Basel) ; 16(9)2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27608024

RESUMO

The absolute distance between the mirrors of a Fabry-Perot cavity with a spacer from an ultra low expansion material was measured by an ultra wide tunable laser diode. The DFB laser diode working at 1542 nm with 1.5 MHz linewidth and 2 nm tuning range has been suppressed with an unbalanced heterodyne fiber interferometer. The frequency noise of laser has been suppressed by 40 dB across the Fourier frequency range 30-300 Hz and by 20 dB up to 4 kHz and the linewidth of the laser below 300 kHz. The relative resolution of the measurement was 10 - 9 that corresponds to 0.3 nm (sub-nm) for 0.178 m long cavity with ability of displacement measurement of 0.5 mm.

3.
Sensors (Basel) ; 15(1): 1342-53, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25587980

RESUMO

We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency.

4.
Sensors (Basel) ; 14(1): 1757-70, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24448169

RESUMO

A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10(-11).

5.
Sensors (Basel) ; 12(3): 3350-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737012

RESUMO

In this paper, a novel principle of contactless gauge block calibration is presented. The principle of contactless gauge block calibration combines low-coherence interferometry and laser interferometry. An experimental setup combines Dowell interferometer and Michelson interferometer to ensure a gauge block length determination with direct traceability to the primary length standard. By monitoring both gauge block sides with a digital camera gauge block 3D surface measurements are possible too. The principle presented is protected by the Czech national patent No. 302948.

6.
Artigo em Inglês | MEDLINE | ID: mdl-20211782

RESUMO

In this contribution we propose a scheme for a generation of precise displacements through conversion of relative stability of components of a femtosecond laser into the length of a Fabry-Perot cavity. The spacing of mirrors of a Fabry-Perot interferometer represents a mechanical length standard referenced to stable optical frequency of a femtosecond mode-locked laser. With the help of a highly selective optical filter, it is possible to get only a few discrete spectral components. By tuning and locking the Fabry-Perot cavity to a selected single component it is possible to get a mechanical length standard with the uncertainty of the repetition frequency of the femtosecond laser. To verify the method, an auxiliary single-frequency laser is locked to the resonance mode of the cavity and simultaneously it is optically mixed with an independent optical frequency standard He-Ne-I2. The stability of the beat-frequency between these 2 lasers represents the stability of the Fabry-Perot cavity length. The stability recording evaluated through Allan variances for one hour of operation is presented. The pilot experimental setup is able to generate the length standard in the order of 0.01 nm for 20 min of integration time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA