Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Biosystems ; 237: 105158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382824

RESUMO

The main unique features of biological systems are reviewed, and four necessary and sufficient attributes of life are formulated, based on the ideas of Ervin Bauer. The possibility of the occurrence of each of these attributes during the origin of life is analyzed. As a result, different scenarios for the origin of life are presented, with their pros and cons. Next, the mainstream of biological evolution is discussed, considering it as a special case of general complexification, and structuredness is defined as a quantitative measure of structural complexity. By introducing the concepts of post-dissipative structure and ratcheting process based on "frozen" patterns, their role in the generation of biological structures underlying biological evolution is demonstrated. Furthermore, it is proposed that all living things can be divided into micro- (unicellular) and macro- (multicellular) creatures, which differ from each other even more radically than the difference between prokaryotes and unicellular eukaryotes. Then the fifth, sufficient, but not necessary attribute of life, hierarchicality, is formulated, which is fully applicable only to macrolife. It is also shown that living organisms are primarily chemodynamic rather than thermodynamic systems, and three basic laws of biochemodynamics are formulated. Finally, fifteen basic features of living beings, grouped into four basic blocks, are summarized.

4.
Biosystems ; 205: 104415, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33812918

RESUMO

It is puzzling why life on Earth consisted of prokaryotes for up to 2.5 ± 0.5 billion years (Gy) before the appearance of the first eukaryotes. This period, from LUCA (Last Universal Common Ancestor) to LECA (Last Eucaryotic Common Ancestor), we have named the Lucacene, to suggest all prokaryotic descendants of LUCA before the appearance of LECA. Here we present a simple model based on horizontal gene transfer (HGT). It is the process of HGT from Bacteria to Archaea and its reverse that we wish to simulate and estimate its duration until eukaryogenesis. Rough quantitation of its parameters shows that the model may explain the long duration of the Lucacene.


Assuntos
Archaea/genética , Bactérias/genética , Evolução Biológica , Eucariotos/genética , Transferência Genética Horizontal , Modelos Biológicos , Biologia de Sistemas , Simulação por Computador , Mutação , Fatores de Tempo
5.
Biosystems ; 193-194: 104131, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32224105

RESUMO

Widespread horizontal gene transfer (HGT) may appear a significant factor that accelerates biological evolution. Here we look at HGT primarily from the point of view of prokaryote clones, which we take as the descendants of a single cell, all of whom have exactly the same nucleotide sequence. Any novelty that emerges as a random mutation, creating a new clone, could either disappear before its first HGT, or survive for a period and be transferred to another clone. Due to the chain character of HGT, each gene with an adaptive mutation is thus spread among numerous existing clones, creating further new clones in the process. This makes propagation far faster than elimination, and such genes become practically immortal and form a kind of "biosphere gene pool" (BGP). Not all of these genes exist in every clone, and moreover not all of them are expressed. A significant fraction of the BGP includes of genes repressed by regulatory genes. However, these genes express often enough to be subject to natural selection. In a changing environment, both repressed and expressed genes, after transferring to another clone, may prove useful in an alternative environment, and this will give rise to new clones. This mechanism for testing repressed genes for adaptability can be thought as a "shuffle of a deck of genes" by analogy with shuffling a deck of cards. In the Archean and Proterozoic eons, both BGP and the operational part of each genome were rather poor, and the probability of incorporation of randomly expressed genes into the operational part of each genome was very small. Accordingly, biological evolution during these eons was slow due to rare adaptive mutations. This explains why the realm of prokaryotes as the sole organisms on Earth lasted so long. However, over about 3.5 billion years before the Phanerozoic eon, the BGP gradually accumulated a huge number of genes. Each of them was useful in a certain environment of past eras. We suggest that multicellular eukaryotes that appeared at the end of the Proterozoic eon could shuffle these genes accumulated in BGP via HGT from prokaryotes that live in these multicellular organisms. Perhaps this was the cause of the "Cambrian explosion" and the high (and increasing) rate of evolution in the Phanerozoic eon compared with the Archean and Proterozoic.


Assuntos
Evolução Biológica , Embaralhamento de DNA/métodos , Evolução Molecular , Pool Gênico , Transferência Genética Horizontal/genética , Eucariotos/genética , Células Procarióticas/fisiologia
6.
Biosystems ; 173: 73-82, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30134151

RESUMO

The construction of an embryo from a single cell precursor is a highly complex process. Evolutionary emergence of the first embryos is even more complex, and involves both a transition to multicellularity along with the establishment of developmental mechanisms. We propose that embryogenesis relies on a community of cells conforming to a regulatory model of emergent multicellularity. This model draws together multiple threads in the scientific literature, from complexity theory to cybernetics, and from thermodynamic entropy to artificial life. All of these strands come together to inform a model of goal-oriented regulation for emergent structures in early life. This is an important step in the evolution of early life, as well as the emergence of complex life in the earliest habitats. Our model, called the cybernetic embryo, allows for a systems-level view of the embryogenetic process.


Assuntos
Cibernética , Desenvolvimento Embrionário , Modelos Biológicos , Algoritmos , Animais , Evolução Biológica , Biologia do Desenvolvimento/história , Ecossistema , Entropia , História do Século XIX , História do Século XX , Humanos , Fenótipo , Termodinâmica
7.
Entropy (Basel) ; 20(7)2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-33265622

RESUMO

This article focuses on several factors of complification, which worked during the evolution of our Universe. During the early stages of such evolution up to the Recombination Era, it was laws of quantum mechanics; during the Dark Ages it was gravitation; during the chemical evolution-diversification; and during the biological and human evolution-a process of distinctifying. The main event in the evolution of the Universe was the emergence of new levels of hierarchy, which together constitute the process of hierarchogenesis. This process contains 14 such events so far, and its dynamics is presented graphically by a very regular and smooth curve. The function that the curve presents is odd, i.e., symmetric about its central part, due to the similarity of patterns of the deceleration during the cosmic/chemical evolution (1st half of the general evolution) and the acceleration during the biological/human evolution (its 2nd half). The main driver of the hierarchogenesis as described by this odd function is counteraction and counterbalance of attraction and repulsion that take various forms at the different hierarchical levels. Direction and pace of the irreversible and inevitable increase of the Universe complexity in accordance with the general law of complification result from a consistent influence of all these factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA