Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Anal Chem ; 96(21): 8604-8612, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691094

RESUMO

Chemical ionization (CI) atmospheric pressure interface mass spectrometry is a unique analytical technique for its low detection limits, softness to preserve molecular information, and selectivity for particular classes of species. Here, we present a fast polarity switching approach for highly sensitive online analysis of a wide range of trace species in complex samples using selective CI chemistries and high-resolution mass spectrometry. It is achieved by successfully coupling a multischeme chemical ionization inlet (MION) and an Orbitrap Fourier transform mass spectrometer. The capability to flexibly combine ionization chemistries from both polarities effectively extends the detectability compared to using only one ionization chemistry, as commonly used positive and negative reagent ions tend to be sensitive to different classes of species. We tested the performance of the MION-Orbitrap using reactive gaseous organic species generated by α-pinene ozonolysis in an environmental chamber and a standard mixture of 71 pesticides. Diethylammonium and nitrate are used as reagent ions in positive and negative polarities. We show that with a mass resolving power of 280,000, the MION-Orbitrap can switch and measure both polarities within 1 min, which is sufficiently fast and stable to follow the temporal evolution of reactive organic species and the thermal desorption profile of pesticides. We detected 23 of the 71 pesticides in the mixture using only nitrate as the reagent ion. Facilitated by polarity switching, we also detected 47 pesticides using diethylammonium, improving the total number of detected species to 59. For reactive organic species generated by α-pinene ozonolysis, we show that combining diethylammonium and nitrate addresses the need to measure oxygenated molecules in atmospheric environments with a wide range of oxidation states. These results indicate that the polarity switching MION-Orbitrap can promisingly serve as a versatile tool for the nontargeted chemical analysis of trace species in various applications.

2.
ACS Omega ; 8(29): 25749-25757, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521638

RESUMO

In this work, the detection characteristics of a large group of common pesticides were investigated using a multi-scheme chemical ionization inlet (MION) with a thermal desorption unit (Karsa Ltd.) connected to an Orbitrap (Velos Pro, Thermo Fisher Scientific) mass spectrometer. Standard pesticide mixtures, fruit extracts, untreated fruit juice, and whole fruit samples were inspected. The pesticide mixtures contained 1 ng of each individual target. Altogether, 115 pesticides were detected, with a set of different reagents (i.e., dibromomethane, acetonylacetone, and water) in different polarity modes. The measurement methodology presented was developed to minimize the common bottlenecks originating from sample pretreatments and nonetheless was able to retrieve 92% of the most common pesticides regularly analyzed with standardized UHPLC-MSMS (ultra-high-performance liquid chromatography with tandem mass spectrometry) procedures. The fraction of detected targets of two standard pesticide mixtures generally quantified by GC-MSMS (gas chromatography with tandem mass spectrometry) methodology was much less, equaling 45 and 34%. The pineapple swabbing experiment led to the detection of fludioxonil and diazinon below their respective maximum residue levels (MRLs), whereas measurements of untreated pineapple juice and other fruit extracts led to retrieval of dimethomorph, dinotefuran, imazalil, azoxystrobin, thiabendazole, fludioxonil, and diazinon, also below their MRL. The potential for mutual detection was investigated by mixing two standard solutions and by spiking an extract of fruit with a pesticide's solution, and subsequently, individual compounds were simultaneously detected. For a selected subgroup of compounds, the bromide (Br-) chemical ionization characteristics were further inspected using quantum chemical computations to illustrate the structural features leading to their sensitive detection. Importantly, pesticides could be detected in actual extract and fruit samples, which demonstrates the potential of our fast screening method.

3.
ACS Appl Polym Mater ; 4(12): 9388-9398, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36532889

RESUMO

Lignocellulosic biorefineries produce lignin-rich side streams with high valorization potential concealed behind their recalcitrant structure. Valorization of these residues to chemicals, materials, and fuels increases the profitability of biorefineries. Fractionation is required to reduce the lignins' structural heterogeneity for further processing. We fractionated the technical biorefinery lignin received after steam explosion and saccharification processes. More homogeneous lignin fractions were produced with high ß-O-4' and aromatic content without residual carbohydrates. Non-toxic biodegradable organic solvents like ethanol and formic acid were used for fractionation and can be adapted to the existing biorefinery processes. Macromolecular properties of the isolated fractions were carefully characterized by structural, chemical, and thermal methods. The ethanol organosolv treatment produced highly soluble lignin with a reasonable yield, providing a uniform material for lignin applications. The organosolv fractionation with formic acid and combined ethanol-formic acid produced modified lignins that, based on thermal analysis, are promising as thermoresponsive materials.

5.
J Agric Food Chem ; 69(21): 5955-5965, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34006113

RESUMO

The complex chemical structure and the fact that many areas in pulping and lignin chemistry still remain unresolved are challenges associated with exploiting lignin. In this study, we address questions regarding the formation and chemical nature of the insoluble residual lignin, the presence of fatty acids in kraft lignin, and the origin of secoisolariciresinol structures. A mild thermal treatment of lignin at maximum kraft-cooking temperatures (∼170 °C) with tall oil fatty acids (TOFA) or in an inert solvent (decane) produced highly insoluble products. However, acetylation of these samples enabled detailed chemical characterization by nuclear magnetic resonance (NMR) spectroscopy. The results show that the secoisolariciresinol (ß-ß) structure in kraft lignin is formed by rearrangement of the ß-aryl ether structure. Furthermore, fatty acids bind covalently to kraft lignin by reacting with the stilbene structures present. It is highly probable that these reactions also occur during kraft pulping, and this phenomenon has an impact on controlling the present kraft pulping process along with the development of new products from kraft lignin.


Assuntos
Lignanas , Lignina , Butileno Glicóis , Ácidos Graxos
6.
ACS Omega ; 5(11): 6130-6140, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226896

RESUMO

The kraft lignin's low molecular weight and too high hydroxyl content hinder its application in bio-based carbon fibers. In this study, we were able to polymerize kraft lignin and reduce the amount of hydroxyl groups by incubating it with the white-rot fungus Obba rivulosa. Enzymatic radical oxidation reactions were hypothesized to induce condensation of lignin, which increased the amount of aromatic rings connected by carbon-carbon bonds. This modification is assumed to be beneficial when aiming for graphite materials such as carbon fibers. Furthermore, the ratio of remaining aliphatic hydroxyls to phenolic hydroxyls was increased, making the structure more favorable for carbon fiber production. When the modified lignin was mixed together with cellulose, the mixture could be spun into intact precursor fibers by using dry-jet wet spinning. The modified lignin leaked less to the spin bath compared with the unmodified lignin starting material, making the recycling of spin-bath solvents easier. The stronger incorporation of modified lignin in the precursor fibers was confirmed by composition analysis, thermogravimetry, and mechanical testing. This work shows how white-rot fungal treatment can be used to modify the structure of lignin to be more favorable for the production of bio-based fiber materials.

7.
ACS Omega ; 5(1): 265-273, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956773

RESUMO

In modern biorefineries, low value lignin and hemicellulose fractions are produced as side streams. New extraction methods for their purification are needed in order to utilize the whole biomass more efficiently and to produce special target products. In several new applications using plant-based biomaterials, the native-type chemical and polymeric properties are desired. Especially, production of high-quality native-type lignin enables valorization of biomass entirely, thus making novel processes sustainable and economically viable. To investigate sulfur-free possibilities for so-called "lignin first" technologies, we compared alkaline organosolv, formic acid organosolv, and ionic liquid processes to simple soda "cooking" using wheat straw and aspen as raw materials. All experiments were carried out using microwave-assisted pulping approach to enable rapid heat transfer and convenient control of temperature and pressure. The main target was to evaluate the advantage of a brief hot water extraction as a pretreatment for the pulping process. Most of these novel pulping methods resulted in high-quality lignin, which may be valorized more diversely than kraft lignin. Lignin fractions were thoroughly analyzed with NMR (13C and HSQC) and gel permeation chromatography to study the quality of the collected lignin. The cellulose fractions were analyzed by determining their lignin contents and carbohydrate profiles for further utilization in cellulose-based products or biofuels.

8.
Front Bioeng Biotechnol ; 8: 604497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392170

RESUMO

Utilization of lignin-rich side streams has been a focus of intensive studies recently. Combining biocatalytic methods with chemical treatments is a promising approach for sustainable modification of lignocellulosic waste streams. Laccases are catalysts in lignin biodegradation with proven applicability in industrial scale. Laccases directly oxidize lignin phenolic components, and their functional range can be expanded using low-molecular-weight compounds as mediators to include non-phenolic lignin structures. In this work, we studied in detail recombinant laccases from the selectively lignin-degrading white-rot fungus Obba rivulosa for their properties and evaluated their potential as industrial biocatalysts for the modification of wood lignin and lignin-like compounds. We screened and optimized various laccase mediator systems (LMSs) using lignin model compounds and applied the optimized reaction conditions to biorefinery-sourced technical lignin. In the presence of both N-OH-type and phenolic mediators, the O. rivulosa laccases were shown to selectively oxidize lignin in acidic reaction conditions, where a cosolvent is needed to enhance lignin solubility. In comparison to catalytic iron(III)-(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation systems, the syringyl-type lignin units were preferred in mediated biocatalytic oxidation systems.

9.
ACS Nano ; 12(8): 8029-8036, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30028590

RESUMO

Cyclophanes are macrocyclic supramolecular hosts famous for their ability to bind atomic or molecular guests via noncovalent interactions within their well-defined cavities. In a similar way, porous crystalline networks, such as metal-organic frameworks, can create microenvironments that enable controlled guest binding in the solid state. Both types of materials often consist of synthetic components, and they have been developed within separate research fields. Moreover, the use of biomolecules as their structural units has remained elusive. Here, we have synthesized a library of organic cyclophanes and studied their electrostatic self-assembly with biological metal-binding protein cages (ferritins) into ordered structures. We show that cationic pillar[5]arenes and ferritin cages form biohybrid cocrystals with an open protein network structure. Our cyclophane-protein cage frameworks bridge the gap between molecular frameworks and colloidal nanoparticle crystals and combine the versatility of synthetic supramolecular hosts with the highly selective recognition properties of biomolecules. Such host-guest materials are interesting for porous material applications, including water remediation and heterogeneous catalysis.


Assuntos
Éteres Cíclicos/química , Ferritinas/química , Estruturas Metalorgânicas/química , Cristalização , Modelos Moleculares , Tamanho da Partícula , Porosidade , Propriedades de Superfície
10.
Methods Mol Biol ; 1776: 267-277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869248

RESUMO

The DNA origami technique is a widely used method to create customized, complex, spatially well-defined two-dimensional (2D) and three-dimensional (3D) DNA nanostructures. These structures have huge potential to serve as smart drug-delivery vehicles and molecular devices in various nanomedical and biotechnological applications. However, so far only little is known about the behavior of these novel structures in living organisms or in cell culture/tissue models. Moreover, enhancing pharmacokinetic bioavailability and transfection properties of such structures still remains a challenge. One intriguing approach to overcome these issues is to coat DNA origami nanostructures with proteins or lipid membranes. Here, we show how cowpea chlorotic mottle virus (CCMV) capsid proteins (CPs) can be used for coating DNA origami nanostructures. We present a method for disassembling native CCMV particles and isolating the pure CP dimers, which can further bind and encapsulate a rectangular DNA origami shape. Owing to the highly programmable nature of DNA origami, packaging of DNA nanostructures into viral protein cages could find imminent uses in enhanced targeting and cellular delivery of various active nano-objects, such as enzymes and drug molecules.


Assuntos
Bromovirus/genética , Empacotamento do DNA/genética , DNA/genética , Proteínas Virais/genética , Proteínas do Capsídeo/genética , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Transfecção/métodos
11.
Chemistry ; 23(18): 4320-4326, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28097714

RESUMO

The development of photoactive and biocompatible nanostructures is a highly desirable goal to address the current threat of antibiotic resistance. Here, we describe a novel supramolecular biohybrid nanostructure based on the non-covalent immobilization of cationic zinc phthalocyanine (ZnPc) derivatives onto unmodified cellulose nanocrystals (CNC), following an easy and straightforward protocol, in which binding is driven by electrostatic interactions. These non-covalent biohybrids show strong photodynamic activity against S. aureus and E. coli, representative examples of Gram-positive and Gram-negative bacteria, respectively, and C. albicans, a representative opportunistic fungal pathogen, outperforming the free ZnPc counterparts and related nanosystems in which the photosensitizer is covalently linked to the CNC surface.


Assuntos
Celulose/química , Indóis/química , Nanopartículas/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Candida albicans/efeitos dos fármacos , Cátions/química , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Escherichia coli/efeitos dos fármacos , Isoindóis , Luz , Tamanho da Partícula , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Compostos de Zinco
12.
Nanoscale ; 8(22): 11674-80, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27219684

RESUMO

DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.


Assuntos
Cátions/química , DNA/química , Polímeros/química , Transfecção , Células A549 , Humanos , Nanoestruturas
13.
ACS Nano ; 10(1): 1565-71, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26691783

RESUMO

Phthalocyanines (Pc) are non-natural organic dyes with wide and deep impact in materials science, based on their intense absorption at the near-infrared (NIR), long-lived fluorescence and high singlet oxygen ((1)O2) quantum yields. However, Pcs tend to stack in buffer solutions, losing their ability to generate singlet oxygen, which limits their scope of application. Furthermore, Pcs are challenging to organize in crystalline structures. Protein cages, on the other hand, are very promising biological building blocks that can be used to organize different materials into crystalline nanostructures. Here, we combine both kinds of components into photoactive biohybrid crystals. Toward this end, a hierarchical organization process has been designed in which (a) a supramolecular complex is formed between octacationic zinc Pc (1) and a tetraanionic pyrene (2) derivatives, driven by electrostatic and π-π interactions, and (b) the resulting tetracationic complex acts as a molecular glue that binds to the outer surface anionic patches of the apoferritin (aFt) protein cage, inducing cocrystallization. The obtained ternary face-centered cubic (fcc) packed cocrystals, with diameters up to 100 µm, retain the optical properties of the pristine dye molecules, such as fluorescence at 695 nm and efficient light-induced (1)O2 production. Considering that (1)O2 is utilized in important technologies such as photodynamic therapy (PDT), water treatments, diagnostic arrays and as an oxidant in organic synthesis, our results demonstrate a powerful methodology to create functional biohybrid systems with unprecedented long-range order. This approach should greatly aid the development of nanotechnology and biomedicine.


Assuntos
Apoferritinas/química , Corantes/química , Indóis/química , Nanoestruturas/química , Compostos Organometálicos/química , Pirenos/química , Cristalização , Isoindóis , Nanotecnologia/métodos , Processos Fotoquímicos , Oxigênio Singlete/química , Compostos de Zinco
14.
Int J Mol Sci ; 16(5): 10201-13, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25950765

RESUMO

Synthetic macromolecules that can bind and co-assemble with proteins are important for the future development of biohybrid materials. Active systems are further required to create materials that can respond and change their behavior in response to external stimuli. Here we report that stimuli-responsive linear-branched diblock copolymers consisting of a cationic multivalent dendron with a linear thermoresponsive polymer tail at the focal point, can bind and complex Pyrococcus furiosus ferritin protein cages into crystalline arrays. The multivalent dendron structure utilizes cationic spermine units to bind electrostatically on the surface of the negatively charged ferritin cage and the in situ polymerized poly(di(ethylene glycol) methyl ether methacrylate) linear block enables control with temperature. Cloud point of the final product was determined with dynamic light scattering (DLS), and it was shown to be approximately 31 °C at a concentration of 150 mg/L. Complexation of the polymer binder and apoferritin was studied with DLS, small-angle X-ray scattering, and transmission electron microscopy, which showed the presence of crystalline arrays of ferritin cages with a face-centered cubic (fcc, Fm3m)) Bravais lattice where lattice parameter a=18.6 nm. The complexation process was not temperature dependent but the final complexes had thermoresponsive characteristics with negative thermal expansion.


Assuntos
Proteínas de Bactérias/química , Ferritinas/química , Ácidos Polimetacrílicos/química , Espermina/química , Dendrímeros/química , Polimerização , Pyrococcus furiosus/química , Temperatura
15.
Biomacromolecules ; 16(2): 476-82, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25522202

RESUMO

The use of phage display to select material-specific peptides provides a general route towards modification and functionalization of surfaces and interfaces. However, a rational structural engineering of the peptides for optimal affinity is typically not feasible because of insufficient structure-function understanding. Here, we investigate the influence of multivalency of diamond-like carbon (DLC) binding peptides on binding characteristics. We show that facile linking of peptides together using different lengths of spacers and multivalency leads to a tuning of affinity and kinetics. Notably, increased length of spacers in divalent systems led to significantly increased affinities. Making multimers influenced also kinetic aspects of surface competition. Additionally, the multivalent peptides were applied as surface functionalization components for a colloidal form of DLC. The work suggests the use of a set of linking systems to screen parameters for functional optimization of selected material-specific peptides.


Assuntos
Carbono/química , Engenharia Química/métodos , Diamante/química , Fragmentos de Peptídeos/química , Carbono/metabolismo , Diamante/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/fisiologia , Propriedades de Superfície
16.
Nat Commun ; 5: 4445, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25033911

RESUMO

Multicomponent crystals and nanoparticle superlattices are a powerful approach to integrate different materials into ordered nanostructures. Well-developed, especially DNA-based, methods for their preparation exist, yet most techniques concentrate on molecular and synthetic nanoparticle systems in non-biocompatible environment. Here we describe the self-assembly and characterization of binary solids that consist of crystalline arrays of native biomacromolecules. We electrostatically assembled cowpea chlorotic mottle virus particles and avidin proteins into heterogeneous crystals, where the virus particles adopt a non-close-packed body-centred cubic arrangement held together by avidin. Importantly, the whole preparation process takes place at room temperature in a mild aqueous medium allowing the processing of delicate biological building blocks into ordered structures with lattice constants in the nanometre range. Furthermore, the use of avidin-biotin interaction allows highly selective pre- or post-functionalization of the protein crystals in a modular way with different types of functional units, such as fluorescent dyes, enzymes and plasmonic nanoparticles.


Assuntos
Bromovirus/química , Nanoestruturas/química , Proteínas/química , Avidina/química , Biotina/química , Bromovirus/ultraestrutura , Cristalização/métodos , Dendrímeros/química , Corantes Fluorescentes/química , Ouro/química , Microscopia Eletrônica de Transmissão , Espalhamento a Baixo Ângulo , Espectrofotometria Ultravioleta , Eletricidade Estática
17.
Nano Lett ; 14(4): 2196-200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24627955

RESUMO

DNA origami structures can be programmed into arbitrary shapes with nanometer scale precision, which opens up numerous attractive opportunities to engineer novel functional materials. One intriguing possibility is to use DNA origamis for fully tunable, targeted, and triggered drug delivery. In this work, we demonstrate the coating of DNA origami nanostructures with virus capsid proteins for enhancing cellular delivery. Our approach utilizes purified cowpea chlorotic mottle virus capsid proteins that can bind and self-assemble on the origami surface through electrostatic interactions and further pack the origami nanostructures inside the viral capsid. Confocal microscopy imaging and transfection studies with a human HEK293 cell line indicate that protein coating improves cellular attachment and delivery of origamis into the cells by 13-fold compared to bare DNA origamis. The presented method could readily find applications not only in sophisticated drug delivery applications but also in organizing intracellular reactions by origami-based templates.


Assuntos
Proteínas do Capsídeo/química , DNA/administração & dosagem , Proteínas Imobilizadas/química , Nanoestruturas/química , Transfecção , Proteínas do Capsídeo/metabolismo , DNA/química , DNA/genética , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Proteínas Imobilizadas/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico
18.
ACS Macro Lett ; 2(8): 720-724, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35606958

RESUMO

Amphiphilic dendrimers have been shown to self-assemble with nanosized protein particles (viruses) to form highly ordered hierarchical assemblies. Here we present Janus-type dendrimers that have been synthesized from Newkome-type dendrons with hydrophilic spermine groups and hydrophobic Percec-type dendrons. These amphiphilic dendrimers bind electrostatically on the surface of virus particles and co-assemble into crystalline complexes with a lattice constant (a = 42 nm) comparable to the size of the virus particles. Small-angle X-ray scattering and cryogenic transmission electron microscopy show that the complexes have a face-centered cubic structure (space group Fm3̅m) and remarkable long-range order. Results indicate that amphiphilic dendrimers can be utilized to create inclusion body mimicking nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA