Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 20(10): 1213-21, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17918623

RESUMO

Calcium-dependent protein kinases (CDPKs) are known to play pivotal roles in intracellular signaling during abiotic and biotic stress responses. To unravel potential functions of CDPKs in the course of barley (Hordeum vulgare)-powdery mildew (Blumeria graminis) interactions, we systematically analyzed the HvCDPK gene family. We found that, according to the existence of respective expressed sequence tags, at least nine paralogs are expressed in the barley leaf epidermis, the sole target tissue of powdery mildew fungi. We exemplarily selected two HvCDPKs with known full-length coding sequence for functional analysis. Transient expression of a putative constitutive active variant of one of these (HvCDPK4) in Nicotiana benthamiana triggered kinase-dependent mesophyll cell death in tobacco leaves. In a barley mlo mutant genotype, a constitutive active variant of the second paralog, HvCDPK3, partially compromised the highly effective resistance to B. graminis f. sp. hordei. A similar break of mlo resistance was seen upon expression of the junction domain of HvCDPK4, supposed to act as a dominant inhibitor of CDPK activity. Expression of a constitutive active HvCDPK3 or HvCDPK4 form also compromised penetration resistance to the inappropriate wheat powdery mildew fungus. Collectively, our data provide evidence for antagonistic roles of individual CDPK paralogs in the control of host cell entry during the early phase of powdery mildew pathogenesis.


Assuntos
Ascomicetos/fisiologia , Hordeum/enzimologia , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Morte Celular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Filogenia , Doenças das Plantas/genética , Epiderme Vegetal/metabolismo , Epiderme Vegetal/microbiologia , Proteínas de Plantas/genética , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Transdução de Sinais , Nicotiana/metabolismo
2.
Plant Physiol ; 144(2): 1132-43, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17449647

RESUMO

Cell polarization is a crucial process during plant development, as well as in plant-microbe interactions, and is frequently associated with extensive cytoskeletal rearrangements. In interactions of plants with inappropriate fungal pathogens (so-called non-host interactions), the actin cytoskeleton is thought to contribute to the establishment of effective barriers at the cell periphery against fungal ingress. Here, we impeded actin cytoskeleton function in various types of disease resistance using pharmacological inhibitors and genetic interference via ectopic expression of an actin-depolymerizing factor-encoding gene, ADF. We demonstrate that barley (Hordeum vulgare) epidermal cells require actin cytoskeleton function for basal defense to the appropriate powdery mildew pathogen Blumeria graminis f. sp. hordei and for mlo-mediated resistance at the cell wall, but not for several tested race-specific immune responses. Analysis of non-host resistance to two tested inappropriate powdery mildews, Erysiphe pisi and B. graminis f. sp. tritici, revealed the existence of actin-dependent and actin-independent resistance pathways acting at the cell periphery. These pathways act synergistically and appear to be under negative control by the plasma membrane-resident MLO protein.


Assuntos
Actinas/metabolismo , Hordeum/metabolismo , Doenças das Plantas/microbiologia , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Proteínas de Bactérias/metabolismo , Citoesqueleto/metabolismo , Genótipo , Glucanos/metabolismo , Hordeum/genética , Hordeum/microbiologia , Fosforilação
3.
Proc Natl Acad Sci U S A ; 102(8): 3135-40, 2005 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15703292

RESUMO

Many fungal pathogens must enter plant cells for successful colonization. Barley mildew resistance locus o (Mlo) is required for host cell invasion upon attack by the ascomycete powdery mildew fungus, Blumeria graminis f.sp. hordei, and encodes the founder of a family of heptahelical integral membrane proteins unique to plants. Recessively inherited loss-of-function mutant alleles (mlo) result in effective penetration resistance to all isolates of the biotrophic parasite. We used noninvasive fluorescence-based imaging to show that fluorescently tagged MLO protein becomes redistributed in the plasma membrane (PM) and accumulates beneath fungal appressoria coincident with the initiation of pathogen entry into host cells. Polarized MLO accumulation occurs once upon attack and appears to be independent of actin cytoskeleton function. Likewise, barley ROR2 syntaxin, a genetically defined component of penetration resistance to B. graminis f.sp. hordei, and a subset of predicted PM-resident proteins become redistributed to fungal entry sites. We previously identified calmodulin, a cytoplasmic calcium sensor, as an interactor and positive regulator of MLO activity and demonstrate here by FRET microscopy an increase in MLO/calmodulin FRET around penetration sites coincident with successful host cell entry. Our data provide evidence for the formation of a pathogen-triggered PM microdomain that is reminiscent of membrane microdomains (lipid rafts) induced upon attempted entry of pathogenic bacteria in animal cells.


Assuntos
Hordeum/fisiologia , Microdomínios da Membrana/fisiologia , Proteínas de Plantas/fisiologia , Estruturas Vegetais/fisiologia , Calmodulina/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Hordeum/microbiologia , Permeabilidade
4.
Biochem J ; 385(Pt 1): 243-54, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15352871

RESUMO

We performed a structure-function analysis of the plasma membrane-localized plant-specific barley (Hordeum vulgare) MLO (powdery-mildew-resistance gene o) protein. Invariant cysteine and proline residues, located either in extracellular loops or transmembrane domains that have been conserved in MLO proteins for more than 400 million years, were found to be essential for MLO functionality and/or stability. Similarly to many metazoan G-protein-coupled receptors known to function as homo- and hetero-oligomers, FRET (fluorescence resonance energy transfer) analysis revealed evidence for in planta MLO dimerization/oligomerization. Domain-swap experiments with closely related wheat and rice as well as diverged Arabidopsis MLO isoforms demonstrated that the identity of the C-terminal cytoplasmic tail contributes to MLO activity. Likewise, analysis of a progressive deletion series revealed that integrity of the C-terminus determines both MLO accumulation and functionality. A series of domain swaps of cytoplasmic loops with the wheat (Triticum aestivum) orthologue, TaMLO-B1, provided strong evidence for co-operative loop-loop interplay either within the protein or between MLO molecules. Our data indicate extensive intramolecular co-evolution of cytoplasmic domains in the evolutionary history of the MLO protein family.


Assuntos
Sequência Conservada , Cisteína/metabolismo , Citoplasma/metabolismo , Hordeum/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Sequência Conservada/genética , Cisteína/genética , Transferência Ressonante de Energia de Fluorescência , Hordeum/genética , Dados de Sequência Molecular , Mutação/genética , Proteínas de Plantas/genética , Prolina/genética , Prolina/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
5.
Plant Cell ; 17(1): 149-63, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15598804

RESUMO

The endoplasmic reticulum (ER) of eukaryotic cells serves as a checkpoint tightly monitoring protein integrity and channeling malformed proteins into different rescue and degradation routes. The degradation of several ER lumenal and membrane-localized proteins is mediated by ER-associated protein degradation (ERAD) in yeast (Saccharomyces cerevisiae) and mammalian cells. To date, evidence for the existence of ERAD-like mechanisms in plants is indirect and based on heterologous or artificial substrate proteins. Here, we show that an allelic series of single amino acid substitution mutants of the plant-specific barley (Hordeum vulgare) seven-transmembrane domain mildew resistance o (MLO) protein generates substrates for a postinsertional quality control process in plant, yeast, and human cells, suggesting conservation of the underlying mechanism across kingdoms. Specific stabilization of mutant MLO proteins in yeast strains carrying defined defects in protein quality control demonstrates that MLO degradation is mediated by HRD pathway-dependent ERAD. In plants, individual aberrant MLO proteins exhibit markedly reduced half-lives, are polyubiquitinated, and can be stabilized through inhibition of proteasome activity. This and a dependence on homologs of the AAA ATPase CDC48/p97 to eliminate the aberrant variants strongly suggest that MLO proteins are endogenous substrates of an ERAD-related plant quality control mechanism.


Assuntos
Retículo Endoplasmático/metabolismo , Hordeum/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos/genética , Sequência Conservada/fisiologia , Evolução Molecular , Proteínas de Membrana/genética , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Mutação/fisiologia , Filogenia , Proteínas de Plantas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA