Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Harmful Algae ; 78: 129-141, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30196920

RESUMO

Monterey Bay, California experiences near-annual blooms of Pseudo-nitzschia that can affect marine animal health and the economy, including impacts to tourism and commercial/recreational fisheries. One species in particular, P. australis, has been implicated in the most toxic of events, however other species within the genus can contribute to widespread variability in community structure and associated toxicity across years. Current monitoring methods are limited in their spatial coverage as well as their ability to capture the full suite of species present, thereby hindering understanding of HAB events and limiting predictive accuracy. An integrated deployment of multiple in situ platforms, some with autonomous adaptive sampling capabilities, occurred during two divergent bloom years in the bay, and uncovered detailed aspects of population and toxicity dynamics. A bloom in 2013 was characterized by spatial differences in Pseudo-nitzschia populations, with the low-toxin producer P. fraudulenta dominating the inshore community and toxic P. australis dominating the offshore community. An exceptionally toxic bloom in 2015 developed as a diverse Pseudo-nitzschia community abruptly transitioned into a bloom of highly toxic P. australis within the time frame of a week. Increases in cell density and proliferation coincided with strong upwelling of nutrients. High toxicity was driven by silicate limitation of the dense bloom. This temporal shift in species composition mirrored the shift observed further north in the California Current System off Oregon and Washington. The broad scope of sampling and unique platform capabilities employed during these studies revealed important patterns in bloom formation and persistence for Pseudo-nitzschia. Results underscore the benefit of expanded biological observing capabilities and targeted sampling methods to capture more comprehensive spatial and temporal scales for studying and predicting future events.


Assuntos
Biodiversidade , Diatomáceas/fisiologia , Monitoramento Ambiental , Eutrofização , California , Toxinas Marinhas/análise
2.
J AOAC Int ; 95(3): 795-812, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22816272

RESUMO

A collaborative study was conducted on a microplate format receptor binding assay (RBA) for paralytic e shellfish toxins (PST). The assay quantifies the composite PST toxicity in shellfish samples based on the ability of sample extracts to compete with (3)H saxitoxin (STX) diHCl for binding to voltage-gated sodium channels in a rat brain membrane preparation. Quantification of binding can be carried out using either a microplate or traditional scintillation counter; both end points were included in this study. Nine laboratories from six countries completed the study. One laboratory analyzed the samples using the precolumn oxidation HPLC method (AOAC Method 2005.06) to determine the STX congener composition. Three laboratories performed the mouse bioassay (AOAC Method 959.08). The study focused on the ability of the assay to measure the PST toxicity of samples below, near, or slightly above the regulatory limit of 800 (microg STX diHCl equiv./kg). A total of 21 shellfish homogenates were extracted in 0.1 M HCl, and the extracts were analyzed by RBA in three assays on separate days. Samples included naturally contaminated shellfish samples of different species collected from several geographic regions, which contained varying STX congener profiles due to their exposure to different PST-producing dinoflagellate species or differences in toxin metabolism: blue mussel (Mytilus edulis) from the U.S. east and west coasts, California mussel (Mytilus californianus) from the U.S. west coast, chorito mussel (Mytilus chiliensis) from Chile, green mussel (Perna canaliculus) from New Zealand, Atlantic surf clam (Spisula solidissima) from the U.S. east coast, butter clam (Saxidomus gigantea) from the west coast of the United States, almeja clam (Venus antiqua) from Chile, and Atlantic sea scallop (Plactopecten magellanicus) from the U.S. east coast. All samples were provided as whole animal homogenates, except Atlantic sea scallop and green mussel, from which only the hepatopancreas was homogenized. Among the naturally contaminated samples, five were blind duplicates used for calculation of RSDr. The interlaboratory RSDR of the assay for 21 samples tested in nine laboratories was 33.1%, yielding a HorRat value of 2.0. Removal of results for one laboratory that reported systematically low values resulted in an average RSDR of 28.7% and average HorRat value of 1.8. Intralaboratory RSDr based on five blind duplicate samples tested in separate assays, was 25.1%. RSDr obtained by individual laboratories ranged from 11.8 to 34.9%. Laboratories that are routine users of the assay performed better than nonroutine users, with an average RSDr of 17.1%. Recovery of STX from spiked shellfish homogenates was 88.1-93.3%. Correlation with the mouse bioassay yielded a slope of 1.64 and correlation coefficient (r(2)) of 0.84, while correlation with the precolumn oxidation HPLC method yielded a slope of 1.20 and an r(2) of 0.92. When samples were sorted according to increasing toxin concentration (microg STX diHCl equiv./kg) as assessed by the mouse bioassay, the RBA returned no false negatives relative to the 800 microg STX diHCl equiv./kg regulatory limit for shellfish. Currently, no validated methods other than the mouse bioassay directly measure a composite toxic potency for PST in shellfish. The results of this interlaboratory study demonstrate that the RBA is suitable for the routine determination of PST in shellfish in appropriately equipped laboratories.


Assuntos
Toxinas Marinhas/análise , Frutos do Mar/análise , Animais , Bioensaio , Cromatografia Líquida de Alta Pressão , Comportamento Cooperativo , Limite de Detecção , Camundongos , Ratos , Reprodutibilidade dos Testes , Saxitoxina/análise , Intoxicação por Frutos do Mar/etiologia
3.
Anal Chim Acta ; 715: 71-9, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22244169

RESUMO

We previously reported a solid-phase extraction (SPE) method for determination of the neurotoxin domoic acid (DA) in both seawater and phytoplankton by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with the purpose of sample desalting without DA pre-concentration. In the present study, we optimized the SPE procedure with seawater and phytoplankton samples directly acidified with aqueous formic acid without addition of organic solvents, which allowed sample desalting and also 20-fold pre-concentration of DA in seawater and phytoplankton samples. In order to reduce MS contamination, a diverter valve was installed between LC and MS to send the LC eluant to waste, except for the 6-min elution window bracketing the DA retention time, which was sent to the MS. Reduction of the MS turbo gas temperature also helped to maintain the long-term stability of MS signal. Recoveries exceeded 90% for the DA-negative seawater and the DA-positive cultured phytoplankton samples spiked with DA. The SPE method for DA extraction and sample clean-up in seawater was extended to mammalian fluids and tissues with modification in order to accommodate the fluid samples with limited available volumes and the tissue extracts in aqueous methanol. Recoveries of DA from DA-exposed laboratory mammalian samples (amniotic fluid, cerebrospinal fluid, plasma, placenta, and brain) were above 85%. Recoveries of DA from samples (urine, feces, intestinal contents, and gastric contents) collected from field stranded marine mammals showed large variations and were affected by the sample status. The optimized SPE-LC-MS method allows determination of DA at trace levels (low pg mL(-1)) in seawater with/without the presence of phytoplankton. The application of SPE clean-up to mammalian fluids and tissue extracts greatly reduced the LC column degradation and MS contamination, which allowed routine screening of marine mammalian samples for confirmation of DA exposure and determination of fluid and tissue DA concentrations in experimental laboratory animals.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácido Caínico/análogos & derivados , Toxinas Marinhas/análise , Fitoplâncton/química , Água do Mar/química , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Líquido Amniótico/química , Animais , Líquidos Corporais/química , Golfinhos/urina , Fezes/química , Feminino , Ácido Caínico/análise , Ratos , Ratos Sprague-Dawley , Leões-Marinhos/urina , Sensibilidade e Especificidade , Baleias/urina
4.
Environ Res ; 112: 67-76, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22018895

RESUMO

The western North Atlantic population of right whales (Eubalaena glacialis) is one of the most critically endangered of any whale population in the world. Among the factors considered to have potentially adverse effects on the health and reproduction of E. glacialis are biotoxins produced by certain microalgae responsible for causing harmful algal blooms. The worldwide incidence of these events has continued to increase dramatically over the past several decades and is expected to remain problematic under predicted climate change scenarios. Previous investigations have demonstrated that N. Atlantic right whales are being exposed to at least two classes of algal-produced environmental neurotoxins-paralytic shellfish toxins (PSTs) and domoic acid (DA). Our primary aims during this six-year study (2001-2006) were to assess whether the whales' exposure to these algal biotoxins occurred annually over multiple years, and to what extent individual whales were exposed repeatedly and/or concurrently to one or both toxin classes. Approximately 140 right whale fecal samples obtained across multiple habitats in the western N. Atlantic were analyzed for PSTs and DA. About 40% of these samples were attributed to individual whales in the North Atlantic Right Whale Catalog, permitting analysis of biotoxin exposure according to sex, age class, and reproductive status/history. Our findings demonstrate clearly that right whales are being exposed to both of these algal biotoxins on virtually an annual basis in multiple habitats for periods of up to six months (April through September), with similar exposure rates for females and males (PSTs: ∼70-80%; DA: ∼25-30%). Notably, only one of 14 lactating females sampled did not contain either PSTs or DA, suggesting the potential for maternal toxin transfer and possible effects on neonatal animals. Moreover, 22% of the fecal samples tested for PSTs and DA showed concurrent exposure to both neurotoxins, leading to questions of interactive effects. Targeted studies employing both in vivo and in vitro model systems represent the next logical step in assessing how and to what extent these algal biotoxins might compromise the health and reproduction of this endangered population.


Assuntos
Espécies em Perigo de Extinção , Exposição Ambiental/análise , Proliferação Nociva de Algas , Toxinas Marinhas/análise , Neurotoxinas/análise , Baleias/crescimento & desenvolvimento , Animais , Oceano Atlântico , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Fezes/química , Feminino , Ácido Caínico/análogos & derivados , Ácido Caínico/análise , Ácido Caínico/farmacocinética , Ácido Caínico/toxicidade , Masculino , Toxinas Marinhas/farmacocinética , Toxinas Marinhas/toxicidade , Neurotoxinas/farmacocinética , Neurotoxinas/toxicidade , Baleias/metabolismo
5.
FEMS Microbiol Ecol ; 73(3): 468-85, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20618855

RESUMO

The brevetoxin-producing dinoflagellate, Karenia brevis, forms nearly annual blooms off the Florida west coast, severely impacting the region's ecology and economy. Bacteria are often cited as either promoting or interfering with the development of algal blooms, and thus a detailed study of the bacterioplankton assemblages associated with K. brevis was undertaken. We developed sixteen 16S rRNA gene clone libraries from K. brevis bloom and adjacent nonbloom water to determine the bacterial groups present and assess the influence of K. brevis cell number and/or depth on bacterioplankton community composition. Most notably, bacterial groups such as Rhodobacterales (Alphaproteobacteria) and Cytophagales/Sphingobacteriales (Bacteroidetes), reported previously to be associated with other harmful algal species, were often abundant in the presence of K. brevis. Cyanobacteria frequently dominated surface samples containing no detectable K. brevis, consistent with earlier work suggesting that these photosynthetic organisms may be important in promoting the proliferation of these blooms by conditioning the water. Moreover, differences in the abundance/diversity of traditionally more rare and often undocumented phylogenetic groups (e.g. Betaproteobacteria, Deltaproteobacteria, Chloroflexus, Firmicutes) were apparent in bloom vs. nonbloom water. This is the first study to document the association of these phylogenetic groups with natural K. brevis populations and suggests a potential role for these microorganisms in K. brevis bloom dynamics.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Bacteroidetes/crescimento & desenvolvimento , Dinoflagellida/microbiologia , Eutrofização , Alphaproteobacteria/genética , Bacteroidetes/genética , Dinoflagellida/crescimento & desenvolvimento , Florida , Biblioteca Gênica , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
6.
Anal Biochem ; 369(1): 128-35, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17662954

RESUMO

Efficient extraction and accurate analysis of lipophilic brevetoxins (PbTxs), produced by the harmful algal bloom (HAB) species Karenia brevis, are essential when assessing the toxicological potential of this dinoflagellate. One of the most commonly used brevetoxin extraction methodologies employs C18 solid-phase extraction (SPE). In this study, C18 SPEC discs were tested for extraction of spiked PbTx-3 in seawater and naturally produced brevetoxins from K. brevis. Quantification of brevetoxin in the extracts was determined using four independent methods: receptor binding assay (RBA), radioimmunoassay (RIA), neuroblastoma (N2A) cytotoxicity assay, and liquid chromatography/mass spectrometry (LC/MS). In addition to quantification of the brevetoxin concentration, LC/MS analysis provided identification of individual congeners and each of their hydrolyzed products. SPEC disc extractions prepared from sonicated cultures of non-brevetoxin-producing Karenia mikimotoi cultures spiked with PbTx-3 yielded extraction efficiencies of 108, 99, and 125% as determined by the RBA, RIA, and N2A cytotoxicity assay, respectively. In SPEC disc extracts of brevetoxin-producing K. brevis (isolate SP3) cultures, LC/MS analysis yielded the highest total concentrations, possibly due to the concurrent detection of hydrolytic brevetoxin congeners that accounted for up to 20% of the congener profile. Relative to the brevetoxin concentration as determined by LC/MS, the RBA, RIA, and N2A cytotoxicity assay detected 73, 83, and 51% of the total brevetoxin concentration. Stability experiments demonstrated that brevetoxins remain stable on the SPEC discs for at least 30 days, making this extraction method suitable for shipboard collections.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/análise , Toxinas Marinhas/isolamento & purificação , Oxocinas/análise , Oxocinas/isolamento & purificação , Extração em Fase Sólida/métodos , Animais , Células Cultivadas , Cromatografia Líquida , Ciclopentanos/análise , Ciclopentanos/isolamento & purificação , Dinoflagellida/classificação , Toxinas Marinhas/toxicidade , Espectrometria de Massas , Compostos Organofosforados/análise , Compostos Organofosforados/isolamento & purificação , Oxocinas/toxicidade , Radioimunoensaio
7.
Environ Sci Technol ; 40(2): 578-83, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16468405

RESUMO

There is a need for assay systems that can detect known and unanticipated neurotoxins associated with harmful algal blooms. The present work describes our attempt to monitor the presence of brevetoxin-3 (PbTx-3) and saxitoxin (STX) in a seawater matrix using the neuronal network biosensor (NNB). The NNB relies on cultured mammalian neurons grown over microelectrode arrays, where the inherent bioelectrical activity of the network manifested as extracellular action potentials can be monitored noninvasively. Spinal cord neuronal networks were prepared from embryonic mice and the mean spike rate across the network was analyzed before and during exposure to the toxins. Extracellular action potentials from the network are highly sensitive not only to purified STX and PbTx-3, but also when in combination with matrixes such as natural seawater and algal growth medium. Detection limits for STX and PbTx-3, respectively, are 0.031 and 0.33 nM in recording buffer and 0.076 and 0.48 nM in the presence of 25-fold-diluted seawater. Our results demonstrated that neuronal networks could be used for analysis of Alexandrium fundyense (STX-producer) and Karenia brevis (PbTx-producer) algal samples lysed directly in the seawater-based growth medium and appropriately diluted with HEPES-buffered recording medium. The cultured network responded by changes in mean spike rate to the presence of STX-or PbTx-producing algae but not to the samples of two non-STX and non-PbTx isolates of the same algal genera. This work provides evidence that the NNB has the capacity to rapidly detect toxins associated with cells of toxic algal species or as dissolved forms present in seawater and hasthe potential for monitoring toxin levels during harmful algal blooms.


Assuntos
Toxinas Marinhas/análise , Redes Neurais de Computação , Oxocinas/análise , Saxitoxina/análise , Água do Mar/química , Animais , Células Cultivadas , Potenciais Evocados/efeitos dos fármacos , Toxinas Marinhas/farmacologia , Camundongos , Microeletrodos , Oxocinas/farmacologia , Saxitoxina/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia
8.
Chem Res Toxicol ; 18(5): 814-6, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15892574

RESUMO

An unusual isomer of domoic acid (1), isodomoic acid C (2), has been found in New Zealand shellfish contaminated by amnesic shellfish poisoning (ASP) toxins and was shown to be produced by a local strain of the pennate diatom Pseudo-nitzschia australis. A bulk culture of this strain was used to isolate 2. The structure was determined from spectroscopic data and was shown to correspond to that of 2 from a Japanese red seaweed, the only other reported occurrence of this compound. The affinity of 2 for GluR6 glutamate receptors was 240-fold lower than for 1, indicating low neurotoxic potential.


Assuntos
Amnésia/induzido quimicamente , Diatomáceas/química , Eutrofização/fisiologia , Doenças Transmitidas por Alimentos , Ácidos Heptanoicos/toxicidade , Toxinas Marinhas/toxicidade , Frutos do Mar/parasitologia , Animais , Neurotoxinas/análise , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Alga Marinha/química , Intoxicação por Frutos do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA